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SUPPORTING MATERIAL 
 
 
Theoretical analysis of a simple model network  
 

We consider a simple model “network” (Fig. 5) consisting of elastic elements that form and 
break stochastically with constant average rates k+ and k– such the steady-state number of 
elements Ln = k+/ k–. The left side of the network is fixed with the right side subjected to a 

constant applied stress σ. The resulting deformation is resisted by an elastic stress e  which is 

the sum of all elastic forces on individual elements and a viscous stress v =  where   is the 

strain rate, and ζ is a drag coefficient which we assume to be a small constant. Assuming a 
constant average strain rate avg  at steady state (see below), the distribution of strains across 

individual network elements is given by: 
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We initially consider the case where the force-extension curve for individual elements is 

linear: 
 

i iF K            (S2) 

 
where i  is strain on the ith element and K is its stiffness. The force balance on the network is 

given by:  
  e            (S3) 

 
and the rate of change of e  as the links form, strain, and break can be written: 
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The first and second terms in Eq. S4 represent force buildup and dissipation due to stretching 

and breaking of existing elements, respectively, and Ln K  corresponds to the elastic modulus of 

the entire network, E0. Setting e = 0 and solving Eqs. S3 and S4 simultaneously for e  and 

constant   yield the asymptotically stable state: 
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Note that for L /n K k  , this reduces to: 
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Thus, for the simple case of linear force-extension,   is always proportional to the magnitude 

of σ, and the effective viscosity is the elastic modulus of the network divided by the turnover 
rate: eff L 0/ ~ / /n K k E k      . 

  
Now, consider the case in which the individual springs have a non-linear force-extension 

curve. For simplicity, we assume that: 
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When a single element exceeds c , deformation is stalled until the element turns over. Then, 

assuming negligible viscous drag, the network will deform at the linear rate: 
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until the next element crosses the strain threshold. In response to a constant  , therefore, the 
average strain rate will be: 
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where avg  is the average strain increment required to bring the next element to threshold, 

avgt  is the time required to achieve that increment at the rate lin , and 1 / k– is the lifetime of 

the strained element. Using avg avg lin/t      , we have: 
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Regardless of details, avg  will decrease monotonically with  . Thus, for non-linear force-

extension, the model predicts a crossover at th avg L~ n K   from a regime where   is directly 

proportional to   ( avg L~ /k n K  ) to one where   is independent of   ( avg avg~ k  ). 

For both regimes, the predicted strain rate is directly proportional to network turnover rate k–, 
again as observed in simulations. Finally, note that when the viscous and elastic contributions to 

eff  are comparable, magnitudes at low   as observed in Fig. 1E ( /Ln K k  ), then Eq. S10 

becomes: 
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The transition from stress-dependent (linear) to stress-independent (non-linear) creep regime 

still occurs, albeit at a slightly higher th . 

 
Parallel computation 
 
  We implemented the computational model in the C language and employed parallel 
computations using the Message Passing Interface (MPI) with spatial domain decomposition. In 
the model, a domain is divided into several rectangular subdomains in x and y directions. Each 
computing core stores and processes only information for elements located in a single subdomain. 
The cores communicate every time step with only a few cores that correspond to adjacent 
subdomains for synchronizing the information of elements located near boundaries of 
subdomains. If elements cross a subdomain boundary, they are transferred from one core to the 
other. At a certain interval, the size of all subdomains is adjusted to make loads on cores as even 
as possible. In this study, 2-64 cores are typically used for each simulation. 

 
Measurement of frequency-dependent elastic moduli 
 
  We evaluated frequency-dependent elastic storage (E’) and loss moduli (E”), by measuring 
stress in response to a small sinusoidal strain (10%) applied to the +x boundary of the rectangle 
domain with the –x boundary fixed. They were calculated in a similar way to that described in 
(1). 
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Interactions between actin filaments and boundaries 
 

Boundaries without a periodic boundary condition (PBC) exert repulsive forces to actin 
filaments that are not clamped for volume-exclusion effects. Under reference conditions, we 
generated a network with <Lf> = 0.9 μm in a rectangular domain (5ⅹ5ⅹ1 μm) with PBC only 
in x and y directions, and then deactivated PBC in x direction for measurement of creep. During 
simulations, few filaments had a length greater than 5 µm, and <Lf> remained at ~0.9 μm due to 
the controlled nucleation rate and symmetric polymerization/depolymerization rates. Therefore, 
severing filaments for avoiding size-effects was unnecessary at mid of simulations. 
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TABLE S1  List of model parameters.  
  

Variable Symbol Value 

Length of cylindrical actin segments r0,A 1.4×10-7 [m]  

Diameter of cylindrical actin segments rc,A 7.0×10-9 [m] (1) 

Bending angle of actin θ0,A 0 [rad] (1) 

Extensional stiffness of actin κs,A 4.2×10-3 [N/m] 

Bending stiffness of actin κb,A 2.64×10-19 [N m] (2) 

Length of a single arm of ACP r0,ACP 3.5×10-8 [m] (3) 

Diameter of a single arm of ACP rc,ACP 1.0×10-8 [m] (3) 

Bending angle 1 of ACP θ0,ACP1 0 [rad] (1) 

Bending angle 2 of ACP θ0,ACP2 π / 2 [rad] (1) 

Extensional stiffness of ACP κs,ACP 4.23×10-4 [N/m]  

Bending stiffness 1 of ACP  κb,ACP1 1.04×10-18 [N m] (1) 

Bending stiffness 2 of ACP κb,ACP2 4.142×10-18 [N m] (1) 

Strength of repulsive force κr 4.23×10-4 [N/m] 

Concentration of actin CA 20-100 [μM] 

Ratio of CACP to CA R 0.001-0.04 

Average length of actin filaments <Lf> 0.6-6.5 [μm] 

Time step Δt 2.3×10-6 [s] 

Viscosity of medium ηm 8.6×10-2 [kg/m s] 
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FIGURE S1  Decomposition of supporting stress into elastic and viscous components. The 
elastic stress σe is sustained by elastic structures that percolate between the left and right 
boundaries. The viscous stress σv originates from viscous drag forces on the portion of the 
network that is connected to the right boundary. 
 
 

 
 
FIGURE S2  Frequency-dependent elastic storage (E’, red squares) and loss moduli (E”, blue 
triangles) with n = 0.1 at 0.001-10 Hz. E’ measures stored energy, indicating the elastic portion 
while E” measures dissipated energy, indicating the viscous portion. E’ is much greater than E” 
at all frequencies, indicating that the network with n = 0.1 exhibits a very elastic response and 
supporting the idea that the creep response is dominated by dissipation of elastic stress. Both E’ 
and E” show a characteristic fall off at f ≤ 0.01 Hz. A dashed line indicates ~f 0.2. 
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FIGURE S3  Transition between stress-dependent (linear) and stress-independent (non-linear) 
regimes persists over a range of network turnover rates (n). (A)  /n vs σ and (B) ηeff×n vs σ for 
n = 0.03 (green circles), 0.1 (blue triangles), 0.3 (cyan diamonds), and 1 (magenta stars). For n  
0.3, all curves collapse onto a single master curve. For higher n, viscous resistance σv becomes 
more dominant (see Fig. 2B), and the dependence of ηeff on σ is reduced. Dashed lines in (A-B) 
represent either ~σ1 or ~σ0. 
 
 

 
 
FIGURE S4  Effects of periodic boundary conditions (PBC) on simulated creep. (A) Snapshots 
of a network with n = 0.1 and σ = 100 Pa at ε = 0.9 during the creep response with (top) or 
without PBC (bottom) in the y direction. Network-spanning (or percolating) pathways are shown 
by yellow in the network comprising actins (cyan) and ACPs (red). (B) ηeff vs σ with (blue 
triangles) or without PBC (red squares). Dashed lines represent either ~σ1 or ~σ0. 
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FIGURE S5  Comparison of ηeff vs σ for different modes of cross-link detachment: actin 
deploymerization (red squares); force-independent ACP unbinding (cyan diamonds and green 
circles); force-dependent ACP unbinding (blue triangles). Relevant parameter values are shown 
in the legend. Biphasic dependence on σ emerges regardless of detachment modes. Actin 
depolymerization with n = 0.03 (red squares) yields an effective ACP unbinding rate of 0.0017, 
but shows four-fold lower effective viscosity than pure unbinding at 0

ubk  = 0.0017/sec (cyan 

diamonds) due to differences in rebinding rates (not shown). For 0
ubk  = 0.0068 (green circles), 

ηeff becomes similar to the case with n = 0.03. Adding force dependence to the basal unbinding 
rate of 0

ubk = 0.0068 (blue triangles) leads to a decrease of ηeff for σ > ~10 Pa. Dashed lines 

indicate either ~σ1 or ~σ0. 
 

 
FIGURE S6  The slope of the autocorrelation function of tensions (–dR/dτ) vs n for σ = 10 Pa. 
Tensions on individual actin filaments decay at a rate proportional to network turnover (n). 
Colored symbols correspond to the colored traces in Fig. 2A. The dashed line indicates ~n1.   
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FIGURE S7  Comparison of ηeff vs σ at n = 0.1 (red squares) with E vs σ (blue triangles). E is 
measured as σ divided by ε at a steady state at n = 0. Both ηeff and E are independent of σ at σ < 1 
Pa but show proportionality to σ at σ > ~1 Pa. Dashed lines represent either ~σ1 or ~σ0.55. 
 
 
 
 
 

 
FIGURE S8  Distribution of maximum relative extension ( max

rL ) during the lifetime of 

individual sub-segments. The distribution is measured for all sub-segments at n = 0.1 in response 
to either low (σ = 0.2 Pa, blue) or high (σ = 10 Pa, red) stress.  
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MOVIE S1 Deformation of networks during the creep with n = 0.1. The top row shows the 
network-spanning (or percolating) pathways (yellow) between two boundaries whose length is 
not greater than 2×[instantaneous domain width in x-direction]. Cyan stands for actin filaments, 
and red represents ACPs. The bottom row in the movie shows the tension level by color scaling. 
Compressive forces are changed to zero represented by blue, and tensions greater than 10 pN are 
shown by red. White shows intermediate levels of tensions. 
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