
526 Biophysical Journal Volume 106 February 2014 526–534
Determinants of Fluidlike Behavior and Effective Viscosity in Cross-Linked
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ABSTRACT The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connec-
tivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in
cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover.
We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissi-
pation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide
range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament
turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a
biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly
with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic
stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network
elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex
of living cells and in other polymer networks.
INTRODUCTION
The ability of the cell cortex to undergo large and irreversible
deformations while maintaining structural integrity is essen-
tial for numerous developmental and physiological processes
including cell motility, polarization, division, and tissue
morphogenesis (1,2). The cell cortex is a network of short
actin filaments interconnected by actin cross-linking proteins
(ACPs) that is enriched just beneath the plasma membrane
(3). On short timescales (<2–3 s), the cortex shows visco-
elastic resistance to deformation, whereas on longer time-
scales, it can undergo viscous deformations and flow (4,5).
These mechanical responses are likely to depend both on
1), network architecture, e.g., the length, density, and con-
nectivity of actin filaments and ACPs; and 2), network turn-
over via ACP binding/unbinding (6) and the dynamic control
of actin polymerization/depolymerization (7–11). However,
how different modes of cortex deformation and flow depend
on the interplay of architecture and turnover remains poorly
understood.

Previous studies of stress relaxation in solution and net-
works of semiflexible polymers considered networks of
stable filaments and focused predominately on the role of
polymer motions and ACP dynamics (12,13). In entangled
solutions of F-actin, translational diffusion or reptation of
filaments facilitates stress relaxation at a rate proportional
to the filament length (14,15). Large stresses enhance poly-
mer mobility and result in stress thinning or fluidization
under applied stress. Reptation is constrained in cross-
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linked actin networks, but stress relaxation can occur via
ACP unbinding (12,16,17). The extent to which filament
turnover might impact these different modes of stress
relaxation is unknown. Moreover, previous theoretical
analyses of stress relaxation assumed highly cross-linked
networks and affine deformations, such that response at
the single-filament level reflects the network response.
However, nonaffine deformations have been shown to
dominate within certain regimes of elastic response (18),
with consequences for stress relaxation that remain to be
explored.

Here, we use computer simulations to investigate the flu-
idlike response of a cross-linked network of dynamically
treadmilling, semiflexible actin filaments to extensional
stress. A key advantage of this approach is that it allows
us to relate network mechanical response to network archi-
tecture as well as to the microscopic dynamics of filaments
and ACPs. Our simulations predict a simple creep response
characterized by an approximately constant creep rate and
thus a relatively constant effective viscosity that are tunable
by varying the density, turnover rate, and length of actin fil-
aments. For a wide range of these parameters, we observe a
biphasic dependence of a creep rate on the level of applied
stress. At low levels of applied stress, we observe a linear
dependence of creep rate on applied stress; at higher levels,
we observe a sharp transition to a nonlinear response regime
in which the creep rate is independent of applied stress.
Comparing microscale dynamics of the full simulations
with the predictions of a simpler toy model, we show that
the existence of these two regimes and the transition be-
tween them can be explained in terms of the interplay of
http://dx.doi.org/10.1016/j.bpj.2013.12.031
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network architecture/turnover and the elastic resistance of
network subelements to applied stress. At each moment,
the elastic resistance is sustained by a small fraction of
the network filaments that are interconnected to form
network-spanning elements; the elastic contribution to
effective viscosity is governed by the continuous dissipation
of elastic energy via cyclic turnover of these tension-bearing
elements. The transition between linear and nonlinear res-
ponse regimes for creep originates from the nonlinear
force-extension response of the tension-bearing elements
where resistance builds rapidly above a critical level of
strain. We discuss the broader implications of this work
for both materials design and the physiological control of
cellular deformation and flow.
METHODS

We used a Brownian dynamics approach to simulate the response of a thin

cortical network, formed by dynamically treadmilling semiflexible actin

filaments and elastic ACPs, to applied stress. The approach and software

implementation are direct extensions of our previous works on cross-

linked actin networks (17,19). We modeled actin filaments as a series of

cylindrical segments connected by elastic hinges to form semiflexible

rods. In a similar way, we modeled ACPs as pairs of rigid rods connected

to one another and to actin filaments by elastic hinges. Each actin filament

has a fixed polarity with fast-growing (barbed) and slow-growing (pointed)

ends.

The forces that arise along each cylindrical segment due to filament-fila-

ment, ACP-ACP, or filament-ACP interactions are referred to endpoints of

the cylinders, whose displacements are governed by a Langevin equation

with inertia neglected:

Fi � zi
dri
dt

þ FB
i ¼ 0; (1)

where ri is the location of ith segment endpoint (actin or ACP), zi is an

effective drag coefficient (see below), t is time, FB is a stochastic force
i

satisfying the fluctuation-dissipation theorem, and Fi is a net deterministic

force. The positions of all segments are updated using the Euler integration

scheme:

riðt þ DtÞ ¼ riðtÞ þ dri
dt
Dt ¼ riðtÞ þ 1

zi

�
FB
i þ Fi

�
Dt; (2)

where Dt ¼ 2.3 � 10�6 s is the time step.
Mechanics of actin filaments and ACPs

We fixed the length and diameter of filament segments (r0,A and rc,A) to be

140 nm and 7 nm, respectively. This level of coarse-graining is appropriate

since 140 nm is still much shorter than the persistence length of an actin

filament, 9 mm (20). The length and diameter of two cylindrical arms for

ACPs (r0,ACP and rc,ACP) are 35 nm and 10 nm, respectively, which mimics

the geometry of a-actinin (21).

Harmonic interaction potentials describe extension and bending of actins

and ACPs with stiffness ks and kb, respectively (Table S1):

Us ¼ 1

2
ksðr � r0Þ2 and Ub ¼ 1

2
kbðq� q0Þ2; (3)

where r is the distance between the two endpoints of a segment, q is the

bending angle, and the subscript 0 denotes the equilibrium value. We as-
signed extensional (ks;A) and bending stiffnesses (kb;A) for actin filaments
based on experimental measurements (20,22), which yields a persistence

length of 9 mm in the presence of stochastic forces. Given the lack of

data, we set parameter values for ACPs (q0;ACP1, q0;ACP2, ks;ACP, kb;ACP1,

kb; ACP2) to reasonable values, as in our previous work (19), where

q0;ACP1 is the equilibrium angle between two arms of ACP, and q0;ACP2 is

the angle formed by an arm of ACP and the axis of the actin filament to

which the ACP is bound. ks;ACP, kb;ACP1, and kb; ACP2 are stiffness constants

related to r0,ACP, q0;ACP1, and q0;ACP2, respectively. We computed repulsive

forces using a harmonic potential that depends on the minimum distance be-

tween pairs of actin segments, as described in our previous work (19).
Effects of the surrounding medium

We defined the effective drag coefficient for each cylindrical segment to

be (23):

zi ¼ 3phmrc;i
3þ 2r0;i=rc;i

5
; (4)

where hm is the medium viscosity. We assumed constant zi regardless of the

length of the filament to which a segment belongs. Likewise, we neglected
hydrodynamic interactions between filaments, since the volume fraction of

actin is very low (<1%), and the actin filaments have a very high aspect ra-

tio (24). Because we focus in this article on a regime in which relaxation of

elastic stress through network turnover dominates the effects of fluid drag

on individual filaments (see below), these assumptions have minimal effects

on the results we report.
Dynamics of actin filaments and ACPs

For most simulations, we modeled filament turnover as a simple steady-

state treadmilling reaction similar to what occurs in vitro under appro-

priate conditions, in which actin filaments undergo net elongation at one

end (the barbed end) and net shrinkage at the other (the pointed end),

such that average length of each filament remains constant. Although fila-

ment turnover in cells is more complex, we chose treadmilling because it

is easy to implement and provides a simple and transparent way to tune

filament turnover rates while keeping other network parameters (e.g.,

filament length and density) constant. We obtained very similar creep

responses for other modes of filament turnover (e.g., severing (25) or

bursting disassembly (26)) if we constrained the per-monomer turnover

rate and the average length and density of filaments to have similar values

(data not shown).

For the treadmilling reaction, we assume distinct force-independent rates

for stochastic addition (þ) and removal (–) of monomers at barbed (B) and

pointed (P) ends (kþB , k
þ
P , k

�
B , k

�
P ) (27), and we introduced scale factor n to

tune overall filament turnover rates while maintaining an approximately

fixed amount of filamentous actin:

kþB ¼ 6n
�
mM�1s�1

�
; kþP ¼ 0:6n

�
mM�1s�1

�
;

k�B ¼ 0:6n
�
s�1

�
; k�P ¼ 6n

�
s�1

� (5)

These parameters yield a treadmilling rate of 5.4n s�1 at a dynamic

steady state. To balance the occasional loss of filaments due to stochastic

polymerization/depolymerization reactions, we introduced simple nucle-

ation at a rate adjusted to maintain a constant number of filaments

throughout each simulation.

We assume a bulk pool of free ACPs that bind single actin filaments and

in turn bind nearby filaments to form functional cross-links. ACPs cross-

link pairs of filaments without preference for angle of contact. In most sim-

ulations, we allowed ACPs to unbind only when the actin segments that

contain them depolymerize, and to simplify the analysis, we ignored any

possible force dependence of ACP unbinding. However, in a few simula-

tions conducted to compare actin turnover with pure ACP unbinding, we
Biophysical Journal 106(3) 526–534
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modeled the unbinding rate (kub) of ACPs using Bell’s equation, as in our

previous work (17):

kub ¼ k0ub exp

�
lubFs

kBT

�
;

where k0ub is the zero-force unbinding rate coefficient, lub is the mechanical

compliance, Fs is a force, and kBT is a thermal energy. The reference values

of k0ub ¼ 0.115 s�1 and lub ¼ 1.04 � 10�10 m in these simulations were

taken from a single-molecule experiment (28).
Network preassembly

As in previous studies (17,19), we allowed actin monomers and ACPs to

self-assemble into a network within a thin three-dimensional rectangular

domain with periodic boundary conditions in x and y directions, reaching

a dynamic steady state when the concentration of free actin monomers falls

to ~1 mM with treadmilling. Unless specified, we used the following refer-

ence parameter values: actin concentration (CA) is 20 mM, molar ratio of

ACPs (R) is 0.02, and the initial widths of the rectangular domain in the

x, y, and z directions are 5 � 5 � 1 mm. These parameters yield a network

composed of ~1200 actin filaments with average filament length (<Lf>)

~0.9 mm and cross-linking distance ~0.4 mm.
Creep test and measurements of elastic/viscous
stresses and effective viscosity

After allowing a network to form, we severed all actin filaments that cross

the network boundaries at 5x, then clamped the filament ends at 5x and

deactivated periodic boundary conditions in the x direction. To simulate a

standard uniaxial creep test, we kept the�x boundary fixed, imposed a con-

stant stress (s ¼ 10 Pa unless specified) in the þx direction on the þx

boundary, and then monitored the time evolution of normal strain, εðtÞ
(Fig. 1 A). Assuming that 5x boundaries are rigid plates, we calculated
FIGURE 1 Creep response to uniaxial applied stress. (A) A schematic view o

boundary, and a stress (s) is applied to the free þx boundary. (B) Snapshots of th

rate (n) ¼ 0.1 and s ¼ 10 Pa. (C) Time evolution of network strain (ε) as a funct

10 Pa (blue dotted line); and n ¼ 0 and s ¼ 10 Pa (red solid line). (D) A strain

function of s. (E) Elastic (se, open symbols) and viscous stress (sv, solid symbo

symbols) and sv (¼ sv/ _ε, solid symbols), respectively. Dashed lines in D and E
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the axial stress at each point in time by dividing the sum of forces acting

on the filaments clamped on the þx boundary by its area. We used propor-

tional and derivative feedback to dynamically adjust the location of the þx

boundary so as to maintain constant stress. We calculated the effective vis-

cosity (heff) from the observed creep response as heff ¼ s/ _ε, where _ε is the
average slope of ε over the range of response times for which the slope is

relatively constant. We computed the viscous stress (sv) as the sum of all

viscous forces acting on the portion of the network connected to the þx

boundary, divided by the area (Fig. S1) and the elastic stress (se) as the dif-

ference between s and sv.
RESULTS

We subjected preassembled networks to uniaxial stress (s)
and monitored network deformation for 100 s in the pres-
ence of continuous filament turnover. In initial simulations,
we implemented several different forms of filament turnover
(treadmilling, severing, and bursting), and observed very
similar responses so long as we constrained average fila-
ment length, density, and per-monomer turnover rate to
have similar values (data not shown). We therefore chose
to focus on an idealized form of treadmilling, because it
allowed us to tune the per-monomer turnover rates indepen-
dent of average filament length and density through a single
scale factor, n (see Methods). With s ¼ 0.2 Pa and n ¼ 0.1,
we observed continuous deformation (creep) over 100 s with
a slow and approximately constant strain rate ( _ε) (Fig. 1 C).
When we increased s to 10 Pa, we observed a significant
elastic deformation at short times, followed by faster creep
over 100 s. A significant finding was that _ε remained rela-
tively constant for 100 s despite large changes in network
f the simulated stress test. A cross-linked actin network is pinned at the –x

e deforming network at t ¼ 0, 30, and 90 s with a relative filament turnover

ion of time for n ¼ 0.1 and s ¼ 0.2 Pa (green dashed line); n ¼ 0.1 and s ¼
rate (_ε) as a function of s for n ¼ 0.1. (Inset) Effective viscosity (heff) as a

ls) depending on s at n ¼ 0.1. (Inset) heff originating from se (¼ se/ _ε, open

indicate either ~s1 or ~s0. To see this figure in color, go online.



FIGURE 2 Dependence of creep response on n. (A) ε versus time for

s ¼ 10 Pa and n ¼ 0.01 (red solid line), 0.03 (green dashed line), 0.1

(blue dashed line), 0.3 (cyan dash-dotted line), and 1 (magenta thin solid

line). (B) Relative magnitudes of se (open symbols) and sv (solid symbols)

as a function of n for s ¼ 10 Pa. (C) heff versus n with s ¼ 10 Pa for n ¼
0.001 to 1. A dashed line indicates heff ~ n�1 for reference. In B and C,

colored symbols correspond to the colored traces in A. (D) _ε as a function
of s for n ¼ 0.03 (green circles), 0.1 (blue triangles), 0.3 (cyan diamonds),

and 1 (magenta stars). For n% 0.3, the data are fit well by a single master

equation (see Eq. 6). Dashed lines represent either ~s1 or ~s0. To see this

figure in color, go online.
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density and filament alignment (Fig. 1 B). These creep re-
sponses are qualitatively similar to those measured both
in vitro (16,29–31) and in vivo (5,32). Significantly, setting
n¼ 0 eliminated the longer-term creep response, but not the
initial elastic deformation, indicating that the creep response
requires filament (thus cross-link) turnover. Moreover, mea-
surements of linear frequency-dependent viscoelastic
moduli E0(f) and E00(f) for f ¼ 0.001–10 Hz revealed a char-
acteristic fall off at low frequencies, as expected for dissipa-
tion of elastic stress due to cross-link turnover (Fig. S2).

To further characterize stress dependence of the creep
response, we calculated _ε and effective viscosity, heff ¼ s/_ε,
over a wide range of applied stress from 0.1 to 100 Pa
(Fig. 1, D and E). At low s, _ε increased in proportion to s

(Fig. 1 D), implying a constant heff (Fig. 1 D, inset). How-
ever, above a critical stress, sth, _ε remained constant over
nearly two orders of magnitude, and thus, heff increased in
proportion to s. Thus, we observe two distinct regimes of
creep-rate dependence on applied stress: a linear regime
below sth in which creep rate is proportional to s, and a
nonlinear regime above sth in which creep rate is constant,
independent of s.

The creep responses that we observed must arise from a
combination of viscous dissipation and internal stress relax-
ation due to rearrangement or turnover of elastic elements
within the network. To clarify the relative contributions
of these two mechanisms at different levels of s, we decom-
posed network forces balancing s into a viscous compo-
nent, sv, due to the drag of network elements against the
surrounding fluid, and an elastic component, se, due to
strain on network-spanning elements (Fig. S1). In the linear
regime, both se and sv increased linearly with s (Fig. 1 E).
In the nonlinear regime (above sth), sv remained constant,
whereas se continued to rise. Accordingly, the viscous
contribution to effective viscosity (sv/ _ε) remained constant
across both regimes, whereas the elastic contribution (se/ _ε)
was constant in the linear regime and increased in propor-
tion to s in the nonlinear regime (Fig. 1 E, inset). We
conclude that elastic stress relaxation and its dependence
on s dominate the creep response to large stress and govern
the transition between the linear and nonlinear regimes.

To gain insights into how filament turnover regulates
stress relaxation and effective viscosity, we explored how
_ε varies for a fixed level of s (10 Pa) when n is varied
from 0.01 to 1 (Fig. 2 A). We observed qualitatively similar
behaviors for all sampled values of n, characterized by
roughly constant _ε over long times. For n % 0.1, the elastic
contribution dominated heff (Fig. 2 B), and heff was inversely
proportional to n (Fig. 2 C). For n > 0.1, the viscous contri-
bution to balancing s (and thus to heff) began to increase,
and heff showed stronger dependence on n. For all values
of n % 0.3, we observed a similar transition from linear to
nonlinear regimes with increasing s, and the linear depen-
dence of _ε on n remained constant over the entire range of
s (Figs. 2 D and S3 A). Within this range of sampled values
for n and s, the data collapsed onto a single master curve
defined by the equation

heff � n ¼ h0
eff

maxðs; sthÞ
sth

; (6)

where h0eff is ~35 Pa$s and sth is ~1 Pa (Fig. S3 B).

The foregoing analysis was conducted with reference

values for CA, R, and <Lf>. To explore the generality of
these results, we varied each of these parameters about
their reference values and measured _ε and heff versus s

and n as above. Significantly, we observed the transition
between the linear and nonlinear stress dependence and
the linear dependence of _ε on n over a wide range of
values for CA, R, and <Lf> (Fig. 3, A–C). Increases in
each of these parameter values lead to sharp decreases in
_ε and thus sharp increases in heff, but these could be offset
by increases in n (Fig. 3 D). Thus, biphasic dependence of
_ε on increasing stress and a linear dependence of _ε on n
appear to be general characteristics of the response to
extensional stress in cross-linked networks with dynamic
filaments.

In the above simulations, periodic boundary conditions
prevented networks from deforming perpendicular to the
axis of applied stress. This approximates the conditions
that accompany unidirectional cortical flow in many cells,
e.g., motile cells or the C. elegans zygote during polariza-
tion (33). To test how this assumption might impact our
Biophysical Journal 106(3) 526–534



FIGURE 3 Transition between linear and nonlinear dependence on s per-

sists over a range of actin concentrations (CA), cross-linking densities (R),

and average filament lengths (<Lf>). (A) heff versus s for n ¼ 0.1 and

s ¼ 10 Pa with CA ¼ 20 (red squares), 50 (green circles), 70 (blue trian-

gles), and 100 mM (cyan diamonds). (B) heff versus s for R ¼ 0.003 (red

squares), 0.008 (green circles), 0.012 (blue triangles), and 0.02 (cyan dia-

monds). (C) heff versus s for<Lf>¼ 0.95 (red squares), 1.5 (green circles),

and 3.5 mm (blue triangles). (D) heff versus s for n ¼ 0.1 (red squares), 1

(green circles), and 10 (blue triangles) with <Lf> ¼ 3.5 mm. Note that

larger networks (10 � 10 � 1 mm) were used for C and D to avoid possible

artifacts. Dashed lines in figure indicate either ~s1 or ~s0. To see this figure

in color, go online.
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results, we simulated creep tests with and without periodic
boundary conditions in the y direction. Not surprisingly,
the initial elastic deformation was larger in the latter case.
However, the long-time creep behavior and its biphasic
dependence on applied stress were very similar for both
cases (Fig. S4).

We also assumed that filament turnover drives cross-link
detachment, and we ignored the possible effects of force-
dependent cross-link unbinding (28) that could soften
networks at higher applied stresses. To evaluate the conse-
quences from these assumptions, we first compared creep
responses for treadmilling as above with pure cross-link un-
binding (without filament turnover), holding the effective
cross-link detachment rate and all other network parameters
constant. We observed a very similar biphasic response to s

in both cases (Fig. S5): heff was fourfold lower for the case
with filament turnover because actin depolymerization both
detaches the cross-link and removes its binding partner to
prevent immediate rebinding (data not shown). However,
the critical stress at which the response becomes nonlinear
was nearly the same in both cases. Next, we compared the
creep behaviors of networks driven solely by unbinding of
cross-linkers with or without force dependence. We intro-
duced force dependence using Bell’s equation, as in previ-
ous work (17), with parameters chosen to mimic the force
dependence of Filamin A (28), and used reference values
Biophysical Journal 106(3) 526–534
for all other parameters. As shown in Fig. S5, we observed
nearly identical dependence of _ε on s up to s ~ 10 Pa for the
force-dependent and force-independent cases, and a slight
softening of the response above s¼ 10 Pa with force-depen-
dent unbinding.

To explore further how elastic stress is supported and
dissipated within networks during simulated creep with fila-
ment turnover, we examined the distribution of forces on in-
dividual filaments over time, F(t). We found that for all
values of n within the elasticity-dominated creep regime
(i.e., se >> sv), at any moment in time, the majority of s
was supported by a relatively small number of highly
strained filaments, belonging to percolating pathways that
spanned the network from one boundary to the other
(Fig. 4 A and Movie S1). The fraction of the filaments that
sustain tension slightly varies, depending on n. For n ¼
0.1 and reference values for other network parameters,
~5% of filaments sustain 99% of the tension (Fig. 4 B). Like-
wise, examining the distribution of changes in tension on
filament segments (DF) over time during simulated creep re-
vealed that in the elasticity-dominated regime, most fila-
ments experience little change in tension, whereas a small
fraction of filaments build or release significant tension
(Fig. 4 C).

We hypothesized that changes in _ε due to variations in n
originate from different lifetimes of tension-bearing seg-
ments. To test this, we examined the autocorrelation of F(t):

RðtÞ ¼ hðFðtÞ � mÞðFðt þ tÞ � mÞi
stdðFÞ ; (7)

where m and std(F) are the mean and standard deviation of

F(t), respectively (Fig. 4 D). Significantly, we observed
faster decay of R(t) as n increased, with the slope of R(t)
proportional to n (Fig. S6). Thus, the faster creep rate at
higher n originates from similar force distributions, but
faster turnover of tension-bearing segments. Together, these
data imply that the origins of creep and the linear depen-
dence of _ε on n (Fig. 2 C) lie in the buildup and release of
elastic stress on network-spanning elements as they form,
become strained, and turn over.

To gain qualitative insight into the origins of elasticity-
dominated creep and the transition between linear and
nonlinear dependence of creep rate on stress, we analyzed
a very simple model network (Fig. 5, and see the Supporting
Material for details) in which a parallel array of network-
spanning elements form at a constant rate kþ, elongate,
and then turn over at a constant rate k– such that the total
number of elements, nL ¼ kþ/k�, is constant. As in our sim-
ulations, we assumed that the network is pinned at one end,
with the other end subjected to a constant stress (s), and we
assumed that the elastic resistance to network deformation
dominates the viscous resistance. We considered two kinds
of force-extension behaviors for individual elements: 1),
linear force-extension (Fig. 5, A–C), with FðεÞ ¼ Kε, where



FIGURE 4 Dissipation of stress through buildup

and turnover of forces on network-spanning path-

ways. (A) Snapshots of a network with n ¼ 0.1

and s ¼ 10 Pa at t ¼ 30, 60, and 90 s during the

creep response. The top row shows network span-

ning (or percolating) pathways (yellow) in the

network comprising actins (cyan) and ACPs

(red). The bottom row shows the distribution of

tensions with the color scale. (B–D) Analysis of

force distribution and turnover across network fila-

ments for simulations with n ¼ 0.01 (red solid

line), 0.03 (green dashed line), 0.1 (blue dotted

line), and 0.3 (cyan dash-dotted line). (B) Distribu-

tion of relative tension across all filaments at one

time point, defined as per-filament tension, F,

divided by 50 pN, where 50 pN corresponds to a

network-level stress of 10 Pa applied to one end

of the reference computational domain. Large ten-

sions are exerted by a very small fraction of the fil-

aments. (C) Distribution of changes in relative F

(DF/50 pN) occurring every 5 s, i.e., DF(t) ¼
F(t) � F(t � 5). (D) Autocorrelation function of

F, R(t) versus t, defined in Eq. 7. The black solid

line corresponds to a case with s ¼ 0.2 Pa and

n ¼ 0.1. To see this figure in color, go online.
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K is a constant stiffness; and 2), nonlinear force-extension
(Fig. 5, D–F), with

F
�
ε

� ¼
�

Kε if ε<εc
N if εRεc

: (8)

For both cases, we analyzed the steady-state creep rate ( _ε) as
a function of s and k� (see the Supporting Material). For

linear force-extension (Fig. 5, A and B), the simple model
predicts _ε ~ k–s/E0, where E0 ¼ nLK is the linear elastic
modulus of the system of springs (Fig. 5 C). By contrast,
for nonlinear force-extension (Fig. 5, D and E), the model
rapid increase above the threshold. (E) A schematic diagram during deformation

(F) Predicted dependence of _ε on s is linear below a critical stress and constant

online.
predicts a transition from linear to nonlinear dependence
of _ε on s at a critical stress sth ~ E0Dεavg, where Dεavg is
the average strain increment required to bring the next
element to threshold. For s < sth, the response is identical
to the linear case: _ε ~ k–s/E0. For s > sth, the network un-
dergoes a series of deformation cycles, in which it first
strains rapidly by an average amount, Dεavg, to bring the
next element to threshold, and then resists further deforma-
tion until that element turns over, whereupon the network is
free to deform again. When elastic resistance dominates
viscous resistance, the time to strain the next element to
threshold is small relative to the lifetime of the strained
FIGURE 5 Analysis of two simple toy models

reveals the origins of linear and nonlinear creep re-

gimes. (A–C) Model in which network-spanning

elements behave as simple linear springs. (A)

Force-extension behavior of individual elements.

Different colors indicate different force levels

shown by the color scale located below. (B) From

left to right, a schematic diagram illustrating the

appearance, force buildup, and disappearance of

individual elements during deformation. (C) Pre-

dicted relationship between a strain rate (_ε) and

applied stress (s) for a network of simple linear

springs. (D–F) Model in which the force-extension

behavior for individual elements is nonlinear. (D)

Force-extension behavior with weak linear depen-

dence below a critical extension threshold and

. Only a small subset of highly extended elements support significant force.

above it (see Supporting Material for details). To see this figure in color, go
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FIGURE 6 Decomposition and analysis of pathway subsegments reveal

linear response under low stress and nonlinear response under high stress.

(A and B) A schematic illustration of network decomposition into serially

connected pathway subsegments. (A) Blue lines represent semiflexible actin

filaments, red are elastic ACPs, yellow dashed lines trace out individual

subsegments, and green circles are points where more than two subseg-

ments connect to one another. (B) Magnification of one pathway subseg-

ment, where green and yellow represent the end-to-end distance (Lee) and

contour length (Lc), respectively, of subsegments. (C) Average relative

time during which subsegments dwell at a particular Lr at n ¼ 0.1 during

network extension under low (s ¼ 0.2 Pa, blue triangles) and high

(s ¼ 10 Pa, red circles) stress. Lmin
r and Lmax

r are the minimum and

maximum, respectively, of Lr during the lifetime of the subsegment. (D)

Distribution of tension (F) over Lr for all subsegments at n¼ 0.1 in response

to either low (s ¼ 0.2 Pa, blue) or high (s ¼ 10 Pa, red) stress. The

nonlinear response of individual subsegments is probed only under high

stress. To see this figure in color, go online.

532 Kim et al.
element, and thus the strain rate is the average deformation
per cycle (Dεavg) times the turnover rate, k�: _ε ¼ k�Dεavg,
independent of s (Fig. 5 F). Thus, in this simple model, a
sharp transition between linear and nonlinear dependence
of _ε on s emerges from the nonlinear force-extension
behavior of individual network elements. Note that in both
regimes, _ε is predicted to be proportional to filament turn-
over rate, k–, as seen in our simulations. Moreover, even
when the viscous and elastic resistances are comparable
for low s (as in Fig. 1 E), the model predicts a sharp transi-
tion between linear and nonlinear regimes.

The foregoing analysis of a simple toy model suggests
how the nonlinear elastic response of individual network
elements could give rise to a biphasic creep response at
the network level. In particular, it suggests that the transi-
tion to a nonlinear creep response occurs at the critical
stress that is just sufficient to probe the nonlinear elastic
response of the network in the absence of turnover, which
will depend on the number and force-extension response
of individual network elements. In our simulated networks
(and in real actin networks), the network architecture is
more complex: The relevant force-transmitting elements
are serially connected chains of filaments and ACPs (here-
after subsegments) that are joined at branch points to form
network-spanning pathways (Fig. 6, A and B), and the for-
mation and turnover of these subsegments are governed by
ACP binding and filament turnover/ACP unbinding.
Nevertheless, we found that the creep response (heff) in
the presence of turnover and the elastic modulus (E ¼
s/ε) in the absence of turnover become nonlinear at the
same critical stress, confirming the prediction of the toy
model (Fig. S7). To further explore the origins of this
threshold in the force-extension behaviors of individual
subsegments during simulated network creep, we defined
the relative extension of subsegments, Lr, to be the ratio
of end-to-end distance to contour length (Lee/Lc, Fig. 6
B), and we tracked tension versus Lr over time in the linear
(s ¼ 0.2 Pa) and nonlinear (s ¼ 10 Pa) creep regimes us-
ing reference values for the other network parameters. For
both cases, individual subsegments paused after formation
at an initial Lr, then extended at a fairly constant rate up to
a maximum value of Lr, then paused again before undergo-
ing turnover (Fig. 6 C). For s ¼ 10 Pa, we observed a
sharp increase in tension for Lr close to 1 (Fig. 6 D). By
contrast, for s ¼ 0.2 Pa, the average maximal value of
Lr was significantly lower than that for s ¼ 10 Pa
(Fig. S8), and there was minimal buildup of force with
increasing Lr, i.e., these elements never reach the threshold
extension for a nonlinear response. Thus, the same ele-
ments can behave as linear or non-linear springs, depend-
ing on s, and consistent with the predictions of our simple
model, a transition between the linear and nonlinear re-
gimes for creep occurs when s is sufficiently large to
strain individual elements into the nonlinear extension
mode.
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DISCUSSION

Plastic deformation and viscous flow (creep) are key behav-
iors of the cell cortex whose underlying mechanisms remain
poorly understood. Here, we used detailed computer simula-
tions to explore mechanisms that govern creep in a cross-
linked network of dynamically treadmilling semiflexible
filaments under extensional stress. We focused our analysis
on a range of network architectures and turnover rates that
lead to nonaffine deformations and large-scale flow. Under
these conditions, we observe a highly nonuniform distribu-
tion of stress across the network in which a small fraction of
filaments, connected by ACPs into network-spanning path-
ways, sustain a large fraction of the load. At each instant,
these percolating pathways provide a load-bearing and
elastic network. However, over time, filament turnover and
ACP unbinding allow stress relaxation and network exten-
sion. Thus, under these conditions, macroscopic creep is
governed by a continuous cycle of pathway formation, force
buildup, pathway turnover, and force release. For each
choice of network parameters, these pathways turn over
with a characteristic timescale, resulting in the fluidlike
behavior that can be described in terms of a simple effective
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viscosity that is inversely proportional to the turnover rate.
The mode of creep that we describe here occurs when actin
concentration and network connectivity are low enough to
allow nonaffine deformations, but high enough that relaxa-
tion of elastic stress dominates viscous dissipation due to
filament interactions with the surrounding fluid.

A somewhat surprising finding is that the same network
can exhibit two distinct regimes of creep response depend-
ing on the level of applied stress: at low stresses, we observe
a linear response regime in which the creep rate is directly
proportional to the magnitude of applied stress; above a
critical stress, the creep rate becomes insensitive to further
increases in applied stress. By comparing the predictions of
a simple model to microscale analysis of simulated creep,
we found that the existence of these two regimes and the
transition between them can be understood in terms of the
nonlinear force-extension behavior of pathway subseg-
ments composed of serially connected chains of semiflex-
ible filaments and ACPs. In the linear regime, the stresses
are sufficiently small that only the linear response of the
subsegments is probed. Above a critical stress, however,
network deformation drives a subset of subsegments into
the nonlinear portion of their force-extension curves. In
this nonlinear regime, we observe a constant creep rate
over a wide range of applied stresses. This insensitivity of
creep rate to variation in stress in the nonlinear regime
may assist cells to flexibly adapt to rapid changes in their
surrounding mechanical environments or to buffer physio-
logical deformations and flows against internal variations
in active (e.g., contractile) stress.

We focused here on an idealized form of treadmilling
turnover, because it allowed us to vary key network param-
eters independently of one another. However, we observed a
very similar biphasic response to applied stress with other
modes of filament turnover (not shown) or with cross-link
detachment driven by pure unbinding (regardless of force-
dependent kinetics). For the network parameters considered
here, in which most of the stress is transmitted by a relatively
small number of network subsegments, we found that force-
dependent kinetics softens the response, but only at stresses
much greater than those required to probe the nonlinear
force-extension response of individual network elements.
We would expect the force dependence of unbinding to be
even less significant at these stresses for more densely con-
nected networks. In addition, recent work suggests that rates
of actin assembly and turnover can be modulated by external
and internal forces with or without actin accessory proteins
(34,35). Exploring how this force dependence shapes the
creep response to applied stress will be an interesting topic
for future studies.

Our work complements previous studies of stress relaxa-
tion in semiflexible networks, which focused on the effects
of ACP unbinding in highly cross-linked networks undergo-
ing affine deformation under shear stress (12,13). In these
cases, network relaxation is well described by stress relaxa-
tions at the filament level, which requires multiple cross-link
unbinding events to achieve full relaxation, yielding a broad
range of relaxation timescales. By contrast, in the nonaffine
regime that we explored, the imposition of constant ex-
tensional stress yields a highly nonuniform distribution of
stress across individual filaments, and stress relaxation
along these filaments is typically achieved through one or
a few unbinding events. Under these conditions, the network
response appears to be well approximated by a single stress-
relaxation timescale, i.e., an effective viscosity, as opposed
to the broad spectrum predicted in the affine regime.
Although the applied stress is localized to one edge of the
network in our simulations, we expect a qualitatively similar
mode of stress relaxation in actin networks that flow in
response to gradients of active stress, as in the lamella of
some motile cells or during polarization in some embryonic
cells (1,2).
CONCLUSION

In this study, we explored how the fluidlike or creep response
of cortexlike actin networks to applied stress depends on
the interplay of network connectivity, turnover, and the
nonlinear force-dependent responses of individual network
elements. We found distinct regimes and mechanisms for
creep, which are likely to be general for cross-linked net-
works consisting of dynamic semiflexible polymers, not
limited to the actin cortex. We have shown here that the
creep can be understood in terms of microscopic force
buildup and release on a small subset of network-spanning
elements that sustain and transmit most of the applied stress,
and we have demonstrated how the nonlinear force response
of individual elements allows the network to buffer deforma-
tion rates against variation in applied stress.
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SUPPORTING MATERIAL 
 
 
Theoretical analysis of a simple model network  
 

We consider a simple model “network” (Fig. 5) consisting of elastic elements that form and 
break stochastically with constant average rates k+ and k– such the steady-state number of 
elements Ln = k+/ k–. The left side of the network is fixed with the right side subjected to a 

constant applied stress σ. The resulting deformation is resisted by an elastic stress e  which is 

the sum of all elastic forces on individual elements and a viscous stress v =  where   is the 

strain rate, and ζ is a drag coefficient which we assume to be a small constant. Assuming a 
constant average strain rate avg  at steady state (see below), the distribution of strains across 

individual network elements is given by: 
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We initially consider the case where the force-extension curve for individual elements is 

linear: 
 

i iF K            (S2) 

 
where i  is strain on the ith element and K is its stiffness. The force balance on the network is 

given by:  
  e            (S3) 

 
and the rate of change of e  as the links form, strain, and break can be written: 
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The first and second terms in Eq. S4 represent force buildup and dissipation due to stretching 

and breaking of existing elements, respectively, and Ln K  corresponds to the elastic modulus of 

the entire network, E0. Setting e = 0 and solving Eqs. S3 and S4 simultaneously for e  and 

constant   yield the asymptotically stable state: 
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Note that for L /n K k  , this reduces to: 
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Thus, for the simple case of linear force-extension,   is always proportional to the magnitude 

of σ, and the effective viscosity is the elastic modulus of the network divided by the turnover 
rate: eff L 0/ ~ / /n K k E k      . 

  
Now, consider the case in which the individual springs have a non-linear force-extension 

curve. For simplicity, we assume that: 
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When a single element exceeds c , deformation is stalled until the element turns over. Then, 

assuming negligible viscous drag, the network will deform at the linear rate: 
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until the next element crosses the strain threshold. In response to a constant  , therefore, the 
average strain rate will be: 
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where avg  is the average strain increment required to bring the next element to threshold, 

avgt  is the time required to achieve that increment at the rate lin , and 1 / k– is the lifetime of 

the strained element. Using avg avg lin/t      , we have: 
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Regardless of details, avg  will decrease monotonically with  . Thus, for non-linear force-

extension, the model predicts a crossover at th avg L~ n K   from a regime where   is directly 

proportional to   ( avg L~ /k n K  ) to one where   is independent of   ( avg avg~ k  ). 

For both regimes, the predicted strain rate is directly proportional to network turnover rate k–, 
again as observed in simulations. Finally, note that when the viscous and elastic contributions to 

eff  are comparable, magnitudes at low   as observed in Fig. 1E ( /Ln K k  ), then Eq. S10 

becomes: 
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The transition from stress-dependent (linear) to stress-independent (non-linear) creep regime 

still occurs, albeit at a slightly higher th . 

 
Parallel computation 
 
  We implemented the computational model in the C language and employed parallel 
computations using the Message Passing Interface (MPI) with spatial domain decomposition. In 
the model, a domain is divided into several rectangular subdomains in x and y directions. Each 
computing core stores and processes only information for elements located in a single subdomain. 
The cores communicate every time step with only a few cores that correspond to adjacent 
subdomains for synchronizing the information of elements located near boundaries of 
subdomains. If elements cross a subdomain boundary, they are transferred from one core to the 
other. At a certain interval, the size of all subdomains is adjusted to make loads on cores as even 
as possible. In this study, 2-64 cores are typically used for each simulation. 

 
Measurement of frequency-dependent elastic moduli 
 
  We evaluated frequency-dependent elastic storage (E’) and loss moduli (E”), by measuring 
stress in response to a small sinusoidal strain (10%) applied to the +x boundary of the rectangle 
domain with the –x boundary fixed. They were calculated in a similar way to that described in 
(1). 
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Interactions between actin filaments and boundaries 
 

Boundaries without a periodic boundary condition (PBC) exert repulsive forces to actin 
filaments that are not clamped for volume-exclusion effects. Under reference conditions, we 
generated a network with <Lf> = 0.9 μm in a rectangular domain (5ⅹ5ⅹ1 μm) with PBC only 
in x and y directions, and then deactivated PBC in x direction for measurement of creep. During 
simulations, few filaments had a length greater than 5 µm, and <Lf> remained at ~0.9 μm due to 
the controlled nucleation rate and symmetric polymerization/depolymerization rates. Therefore, 
severing filaments for avoiding size-effects was unnecessary at mid of simulations. 
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TABLE S1  List of model parameters.  
  

Variable Symbol Value 

Length of cylindrical actin segments r0,A 1.4×10-7 [m]  

Diameter of cylindrical actin segments rc,A 7.0×10-9 [m] (1) 

Bending angle of actin θ0,A 0 [rad] (1) 

Extensional stiffness of actin κs,A 4.2×10-3 [N/m] 

Bending stiffness of actin κb,A 2.64×10-19 [N m] (2) 

Length of a single arm of ACP r0,ACP 3.5×10-8 [m] (3) 

Diameter of a single arm of ACP rc,ACP 1.0×10-8 [m] (3) 

Bending angle 1 of ACP θ0,ACP1 0 [rad] (1) 

Bending angle 2 of ACP θ0,ACP2 π / 2 [rad] (1) 

Extensional stiffness of ACP κs,ACP 4.23×10-4 [N/m]  

Bending stiffness 1 of ACP  κb,ACP1 1.04×10-18 [N m] (1) 

Bending stiffness 2 of ACP κb,ACP2 4.142×10-18 [N m] (1) 

Strength of repulsive force κr 4.23×10-4 [N/m] 

Concentration of actin CA 20-100 [μM] 

Ratio of CACP to CA R 0.001-0.04 

Average length of actin filaments <Lf> 0.6-6.5 [μm] 

Time step Δt 2.3×10-6 [s] 

Viscosity of medium ηm 8.6×10-2 [kg/m s] 
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FIGURE S1  Decomposition of supporting stress into elastic and viscous components. The 
elastic stress σe is sustained by elastic structures that percolate between the left and right 
boundaries. The viscous stress σv originates from viscous drag forces on the portion of the 
network that is connected to the right boundary. 
 
 

 
 
FIGURE S2  Frequency-dependent elastic storage (E’, red squares) and loss moduli (E”, blue 
triangles) with n = 0.1 at 0.001-10 Hz. E’ measures stored energy, indicating the elastic portion 
while E” measures dissipated energy, indicating the viscous portion. E’ is much greater than E” 
at all frequencies, indicating that the network with n = 0.1 exhibits a very elastic response and 
supporting the idea that the creep response is dominated by dissipation of elastic stress. Both E’ 
and E” show a characteristic fall off at f ≤ 0.01 Hz. A dashed line indicates ~f 0.2. 
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FIGURE S3  Transition between stress-dependent (linear) and stress-independent (non-linear) 
regimes persists over a range of network turnover rates (n). (A)  /n vs σ and (B) ηeff×n vs σ for 
n = 0.03 (green circles), 0.1 (blue triangles), 0.3 (cyan diamonds), and 1 (magenta stars). For n  
0.3, all curves collapse onto a single master curve. For higher n, viscous resistance σv becomes 
more dominant (see Fig. 2B), and the dependence of ηeff on σ is reduced. Dashed lines in (A-B) 
represent either ~σ1 or ~σ0. 
 
 

 
 
FIGURE S4  Effects of periodic boundary conditions (PBC) on simulated creep. (A) Snapshots 
of a network with n = 0.1 and σ = 100 Pa at ε = 0.9 during the creep response with (top) or 
without PBC (bottom) in the y direction. Network-spanning (or percolating) pathways are shown 
by yellow in the network comprising actins (cyan) and ACPs (red). (B) ηeff vs σ with (blue 
triangles) or without PBC (red squares). Dashed lines represent either ~σ1 or ~σ0. 
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FIGURE S5  Comparison of ηeff vs σ for different modes of cross-link detachment: actin 
deploymerization (red squares); force-independent ACP unbinding (cyan diamonds and green 
circles); force-dependent ACP unbinding (blue triangles). Relevant parameter values are shown 
in the legend. Biphasic dependence on σ emerges regardless of detachment modes. Actin 
depolymerization with n = 0.03 (red squares) yields an effective ACP unbinding rate of 0.0017, 
but shows four-fold lower effective viscosity than pure unbinding at 0

ubk  = 0.0017/sec (cyan 

diamonds) due to differences in rebinding rates (not shown). For 0
ubk  = 0.0068 (green circles), 

ηeff becomes similar to the case with n = 0.03. Adding force dependence to the basal unbinding 
rate of 0

ubk = 0.0068 (blue triangles) leads to a decrease of ηeff for σ > ~10 Pa. Dashed lines 

indicate either ~σ1 or ~σ0. 
 

 
FIGURE S6  The slope of the autocorrelation function of tensions (–dR/dτ) vs n for σ = 10 Pa. 
Tensions on individual actin filaments decay at a rate proportional to network turnover (n). 
Colored symbols correspond to the colored traces in Fig. 2A. The dashed line indicates ~n1.   
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FIGURE S7  Comparison of ηeff vs σ at n = 0.1 (red squares) with E vs σ (blue triangles). E is 
measured as σ divided by ε at a steady state at n = 0. Both ηeff and E are independent of σ at σ < 1 
Pa but show proportionality to σ at σ > ~1 Pa. Dashed lines represent either ~σ1 or ~σ0.55. 
 
 
 
 
 

 
FIGURE S8  Distribution of maximum relative extension ( max

rL ) during the lifetime of 

individual sub-segments. The distribution is measured for all sub-segments at n = 0.1 in response 
to either low (σ = 0.2 Pa, blue) or high (σ = 10 Pa, red) stress.  
 
 
 



MOVIE S1 Deformation of networks during the creep with n = 0.1. The top row shows the 
network-spanning (or percolating) pathways (yellow) between two boundaries whose length is 
not greater than 2×[instantaneous domain width in x-direction]. Cyan stands for actin filaments, 
and red represents ACPs. The bottom row in the movie shows the tension level by color scaling. 
Compressive forces are changed to zero represented by blue, and tensions greater than 10 pN are 
shown by red. White shows intermediate levels of tensions. 
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