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RELATIONS BETWEEN THE VARIANCE OF A
TIME-ESTIMATE, THE CORRELATION

FUNCTION AND THE POWER SPECTRUM

In this section we briefly describe how the variance of
a time estimate of a specific quantity is related to the
correlation function. We describe the state of a receptor
with the variable n, where n = 0, 1 depending on whether
the receptor is free or bound, respectively. The estimate
nT of the receptor occupancy n, obtained by integrating
n(t) over an integration time T , is

nT =
1

T

∫ T

0

n(t)dt. (S1)

The variance in nT , σ2
nT , is given by

σ2
nT =

〈
n2
T

〉
− 〈nT 〉2 (S2)

=
1

T 2

∫ T

0

∫ T

0

dtdt′ 〈n (t)n (t′)〉 − 〈nT 〉2 (S3)

=
1

T 2

∫ T

0

∫ T−t

−t
dtdτ 〈n (0)n (τ)〉 − 〈n〉2 , (S4)

where in Eq. S4 we have defined τ = t′ − t and assumed
the process to be stationary. The angular brackets denote
an ensemble average over a large number of independent
measurements. The correlation function for the observ-
able n (t) is defined as

Cn (τ) ≡ 〈n (0)n (τ)〉 − 〈n〉2 . (S5)

Substitution of Eq. S5 into Eq. S4 yields

σ2
nT =

1

T 2

∫ T

0

dt

∫ T−t

−t
dτC (τ) , (S6)

which in the limit of large T becomes

σ2
nT =

T�τn

1

T

∫ ∞
−∞

dτCn (τ)

=
2σ2

nτn
T

. (S7)

Here we have used the fact that limτ�τn Cn (τ) = 0 and
introduced the correlation time τn:

τn ≡
1

σ2
n

∫ ∞
0

Cn (τ) dτ. (S8)

The correlation function and the power spectrum
Pn (ω) are related through the Fourier Transform

Cn (τ) =
1√
2π

∫ ∞
−∞

dωPn (ω) eiωτ , (S9)

Pn (ω) =
1√
2π

∫ ∞
−∞

dτCn (τ) e−iωτ , (S10)

such that

Cn (0) =
1√
2π

∫ ∞
−∞

dωPn (ω) = σ2
n, (S11)

Pn (0) =
1√
2π

∫ ∞
−∞

dτCn (τ) = 2σ2
nτn = Tσ2

nT . (S12)

Because the correlation function is real and even in time,
we have

Pn (ω) = Ĉn (s = iω) + Ĉn (s = −iω), (S13)

where Ĉn(s) =
∫∞

0
Cn(t)e−st is the Laplce transform of

the correlation function. The correlation time is there-
fore related to the Laplace transform of the correlation
function by

2σ2
nτn = Pn (0) (S14)

= 2Re
[
Ĉ (s = iω)

]
ω=0

. (S15)

TIME-DEPENDENT RATE CONSTANTS

Following Agmon and Szabo [1], we consider a single
static receptor at the origin and a single ligand molecule
that moves with diffusion constant D. The probabil-
ity that the ligand molecule is at distance r at time t
given that it was initially at a distance r0 is given by the
Green’s function p(r, t|r0). The evolution of the Green’s
function is given by the diffusion equation

∂p(r, t|r0)

∂t
=

1

r2

∂

∂r
Dr2e−βU(r) ∂

∂r
eβU(r)p(r, t|r0),

(S16)

where β is the inverse temperature and U(r) is the in-
teraction potential. The reaction between receptor and
ligand is modeled as a boundary condition to the solu-
tion of this equation. If receptor and ligand can associate
with the intrinsic association rate ka when they are at the
contact distance r = σ, then the boundary condition is

4πσ2D
∂p(r, t|r0)

∂r

∣∣∣∣
r=σ

= kap(σ, t|r0). (S17)
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If ka is finite, then the boundary condition is called a radi-
ation boundary condition, while if ka →∞, the boundary
condition is an absorbing coundition. The latter must be
used to obtain the rate constant of diffision-limited reac-
tions, where receptor and ligand associate upon the first
collision.

The survival probability Sα(t|r0) is the probability
that a particle, which starts at a position r0, has not
yet reacted at a later time t. It is given by

Sα(t|r0) = 4π

∫ ∞
σ

drr2p(r, t|r0). (S18)

The subscript α is either “rad” or “abs”, corresponding
to ka being finite or infinite, respectively.

The propensity function Rα(t|r0) is the probabiltiy
that a ligand particle, which starts at r = r0, reacts for
the first time at a later time t:

Rα(t|r0) = −∂Sα(t|r0)

∂t
. (S19)

The time-dependent rate constant kα(t) is

kα(t) = 4π

∫ ∞
σ

dr0r
2
0Rα(t|r0)peq(r0). (S20)

The distribution peq(r0) is the equilibrium radial distri-
bution function, peq(r) = e−βU(r). If ligand and receptor
only interact at contact as assumed in this study, then
U(r) = 0 for r ≥ σ and peq = 1, meaning that the equi-
librium distribution corresponds to a spatially uniform
distribution. The time-dependent rate constant kα(t) di-
vided by the volume V is the probability per unit amount
of time that receptor and ligand associate for the first
time at a later time t, averaged over all initial positions
r0 drawn from the equilibrium distribution peq(r0).

For N non-interacting ligand molecules in a volume
V at concentration c = N/V , which initially have an
equilibrium distribution, the probability that no ligand
molecules have reacted at a later time t is Sα(t|eq). In
the limit that V →∞ and N →∞, the probability that
a ligand molecule reacts for the first time at a later time
t is

−∂Sα(t|eq)

∂t
= krad(t)cSα(t|eq). (S21)

This can be integrated to yield

Sα(t|eq) = e−c
∫ t
0
dt′kα(t′). (S22)

The expressions Eq. S18 - Eq. S22 hold for both radi-
ating and absorbing boundary conditions, corresponding
to ka being finite and infinite, respectively. When ka is
finite, Rrad(t|r0) is also given by

Rrad(t|r0) = kap(σ, t|r0) (S23)

and the time-dependent rate constant krad(t) is then also
given by

krad(t) = 4πka

∫ ∞
σ

dr0r
2
0p(σ, t|r0)peq(r0) (S24)

To relate krad(t) to kabs(t) in what follows below it will
be useful to exploit the detailed-balance condition

peq(r0)p(r, t|r0) = peq(r)p(r0, t|r). (S25)

We can integrate this equation over r0 to find

4π

∫
dr0r

2
0p(r, t|r0)peq(r0) = peq(r)Sα(t|r). (S26)

Combining this equation with Eq. S24 we find that

krad(t) = peq(σ)kaSrad(t|σ), (S27)

which for V (r) = 0, as assumed here, reduces to

krad(t) = kaSrad(t|σ). (S28)

The time-dependent rate constant krad(t) can be re-
lated to the time-dependent rate constant kabs(t) via

krad(t) =

∫ t

0

dt′Rrad(t− t′|σ)kabs(t
′). (S29)

This can be understood by noting that kabs(t
′)/V is the

probability per unit amount of time that receptor and
ligand come in contact for the first time at time t′, while
Rrad(t− t′)|σ) is the probability that receptor and ligand
which start at contact r = σ at time t′ associate a time
t− t′ later. In Laplace space, the above expression reads

k̂rad(s) = R̂rad(s|σ)k̂abs(s). (S30)

Since Rrad(t|σ) = −∂Srad(t|σ)/∂t, R̂rad(s|σ) is also given
by

R̂rad(s|σ) = 1− sŜrad(s|σ). (S31)

The Laplace transform of Eq. S28 yields k̂rad(s) =
kaŜrad(s|σ). Combining this with Eq. S30 and Eq. S31
yields

k̂rad(s) =
kak̂abs(s)

ka + sk̂abs(s)
. (S32)

DERIVATION OF EQ. 13 OF MAIN TEXT

In this section we derive the correlation function and
the correlation time for a receptor which switches be-
tween a ligand-bound state n = 1 and a ligand-unbound
state n = 0. The correlation function for the receptor
state n is

Cn (τ) = p0
∗
(
p∗|∗ (τ)− p0

∗
)
, (S33)
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where p0
∗ = 〈n〉 = n is the equilibrium probability that

the receptor is bound (∗) and p∗|∗ (τ) is the probability
that the receptor is bound at time t = τ , given that it
was bound initially. For every two-state process we can
write

p∗|∗ (τ) = 1− p0|∗ (τ) (S34)

= 1−Srev (τ |∗) , (S35)

where Srev (τ |∗) is the probability that the receptor is
free at time τ given that it was bound initially; note that
in between the receptor may have switched between the
bound and unbound state many times. In Laplace space

p̂∗|∗ (s) = s−1 − Ŝrev (s|∗) , (S36)

such that we have

Ĉn (s) = p0
∗

(
s−1 − Ŝrev (s|∗)− p0

∗
s

)
. (S37)

The initial value theorem states that the s→∞ limit of
sĈn(s) in the Laplace domain is equal to the t→ 0 limit
of C (t) in the time domain, thus

lim
s→∞

sĈn (s) = lim
t→0

Cn (t) = σ2
n. (S38)

For a binary process the variance is

σ2
n = p0

∗
(
1− p0

∗
)

= n (1− n) . (S39)

The Laplace transform of Eq. 8 of the main text yields

L
[
Srev (t|∗) = kd

∫ t

0

[1−Srev (t′|∗)] Srad (t− t′|σ) dt′
]

(S40)

=⇒ sŜrev (s|∗) =
kdŜrad (s|σ)

1 + kdŜrad (s|σ)
. (S41)

We assume the ligand particles are non-interacting and,
following Agmon and Szabo [1], we approximate the sur-
vival probability as

Srad (t|σ) = Srad (t|eq)Srad (t|σ) . (S42)

This is Eq. 9 of the main text. Here Srad (t|σ) is the sur-
vival probability for the geminate receptor-ligand pair at
contact; it is the probability that a receptor which ini-
tially is surrounded by only one ligand molecule at con-
tact, is still free at a later time t. The quantity Srad (t|eq)
is the survival probability for the receptor in a sea of equi-
librated ligand molecules. In the main text we elaborate
on the assumptions underlying this approximation.

We now relate the survival probability Srad (t|eq) for
a receptor surrounded by an equilibrium distribution of
ligand molecules to the survival probability Srad (t|σ) for
a receptor with only ligand molecule at contact. To this
end, we exploit that both survival probabilities can be

related to the time-dependent rate constant krad(t). As
shown in the previous section (Eq. S28), detailed balance
yields [1]

krad (t) = kaSrad (t|σ) . (S43)

On the other hand, we know that Srad (t|eq) is given by
(see Eq. S22 in previous section)

Srad (t|eq) = e−c
∫ t
0
krad(t′)dt′ . (S44)

Combining these two equations yields the following ex-
pression for the time derivative of Srad (t|eq):

dSrad (t|eq)

dt
= −ckrad (t) Srad (t|eq) (S45)

= −ckaSrad (t|σ) Srad (t|eq) (S46)

= −ckaSrad (t|σ) . (S47)

The Laplace transform of Eq. S47 is

sŜrad (s|eq)− 1 = −ckaŜrad (s|σ) . (S48)

Combining this equation with Eq. S41 gives

1− sŜrev (s|∗) =
cKeq

1 + cKeq − sŜrad (s|eq)
, (S49)

where Keq = ka/kd is the equilibrium constant. Substi-
tuting this result in Eq. S37, we find

Ĉn (s) =
n

s

(
1− sŜrev (s|∗)− n

)
=
n

s

(
cKeq(1− n) + nŜrad (s|eq)− n

1 + cKeq − sŜrad (s|eq)

)

= σ2
n

nŜrad (s|eq)

1− (1− n) sŜrad (s|eq)
, (S50)

where in deriving the last line we have used that cKeq =
n/(1 − n) and σ2

n = n(1 − n). Noting that n = kacτc
and 1 − n = kdτc, with τc = (kac + kd)

−1 the intrinsic
correlation time, Eq. 11 of the main text is obtained.

To continue, an expression for Ŝrad (s|eq) is required.
A general expression for the Laplace transform of Eq. S44
is not available. We can, however, expand Srad (t|eq),

Srad (t|eq) = e−c
∫ t
0
krad(t′)dt′ (S51)

≈ 1− c
∫ t

0

krad (t′) dt′ + . . . , (S52)

and now take the Laplace transform [1]:

Ŝrad (s|eq) = s−1 − s−1ck̂rad (s) + . . . (S53)

≈ s−1
(

1 + ck̂rad (s)
)−1

. (S54)

For small times and low concentrations, the above ap-
proximation is accurate because the higher order terms in
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the expansions of Eq. S52 and Eq. S53 can be neglected.
For long times, krad(t) becomes constant, krad(t→∞) =
kon, and the Laplace transform of Srad (t|eq) is exactly

given by Eq. S54, with k̂rad (s) = kon/s.

The Laplace transform k̂rad(s) of the time-dependent
rate constant krad(t) can be related to the Laplace trans-

form k̂abs(s) of the time-dependent rate constant kabst(t)
of a diffusion-limited reaction via (see previous section)
[1]

k̂rad(s) =
kakabs(s)

ka + skabs(s)
. (S55)

The time-dependent rate constant kabs(t) of a diffusion-
limited reaction is [2]

kabs(t) = 4πσD
(

1 + σ/
√
πDt

)
, (S56)

which in the Laplace domain becomes

sk̂abs(s) = kD

(
1 + σ

√
s/D

)
, (S57)

= kD (1 + τ(s)) , (S58)

where τ (s) ≡ σ
√
s/D =

√
sτm with the molecular time

scale τm = σ2/D and kD ≡ kabs(t → ∞) = 4πσD is
the diffusion-limited reaction rate. Substituting this in
Eq. S55 gives

k̂rad(s) =
kakD
s

1 + τ (s)

ka + kD (1 + τ (s))
, (S59)

which can be plugged into Eq. S54 to yield

Ŝrad (s|eq) ≈
ka + kD (1 + τ (s))

s (ka + kD (1 + τ (s))) + ckakD (1 + τ (s))
. (S60)

We now insert the above expression into Eq. S50, which
gives

Ĉn (s) = σ2
n

n (ka + kD(1 + τ(s)))

ckakD(1 + τ(s)) + ns (ka + kD(1 + τ(s)))

= σ2
n

τc (ka + kD(1 + τ(s)))

kD(1 + τ(s)) + τcs (ka + kD(1 + τ(s)))
,

(S61)

where we have used that n = kacτc, with τc = (kac +
kd)
−1 the intrinsic correlation time of the receptor. We

define

Σ(s) ≡ ka
kD(1 + τ(s))

(S62)

and the receptor correlation time τ ′c(s) renormalized by
concentration fluctuations:

τ ′c(s) ≡ τc (1 + Σ(s)) , (S63)

=
ka + kD(1 + τ(s))

kD(1 + τ(s))
. (S64)

We now substitute the above expression in Eq. S61 to
arrive at Eq. 13 of the main text:

Ĉn (s) = σ2
n

τ ′c(s)

sτ ′c(s) + 1
. (S65)

To obtain the correlation time, we take the limit s = 0

since Re
[
Ĉn (s = 0)

]
= σ2

nτn (see Eq. S14):

Ĉn (s = 0) =
Pn (ω = 0)

2
(S66)

= σ2
n

ka + kD
(kac+ kd) kD

. (S67)

Hence, the receptor correlation time, normalized by con-
centration fluctuations, is

τn = τ ′c(s→ 0), (S68)

=
ka + kD

(kac+ kd) kD
. (S69)

VALIDITY OF ASSUMPTIONS UNDER
BIOLOGICALLY RELEVANT CONDITIONS

Our theory makes two assumptions: I After recep-
tor dissociation, the unbound receptor-ligand pair is sur-
rounded by a uniform distribution of ligand molecules;
this is described by Eq. 9 of the main text and Eq. S42
of the SI; II the Laplace transform of Srad (t|eq) is given
by Eq. 12 of the main text and Eq. S54 of the SI. Below,
we address the validity of these two assumptions. But
before doing so, we give a qualitative argument for why
both assumptions are satisfied.

Timescale separation

The validity of both assumptions is rooted in a
timescale separation: the time a molecule spends near
the receptor is very short compared to the timescale on
which molecules bind the receptor from the bulk, i.e.
starting from a uniform distribution. This is illustrated
in Fig. S1. It is seen that Srad (t|σ) (blue dashed line) de-
cays much more rapidly than Srad (t|eq) (red solid line).
Indeed, a ligand molecule near the receptor effectively ei-
ther instantly (re)binds the receptor or diffuses into the
bulk. Consequently, the probability of rebinding interfer-
ence is very small, meaning that assumption I is satisfied.

The second assumption II follows from the observation
that the range over which Srad (t|eq) = e−c

∫ t
0
dt′krad(t′)

deviates from its exponential decay at long times,
limt→∞Srad (t|eq) ≈ e−konct, is given by Srad (t|σ)—the
rate at which krad(t) reaches its limiting value kon is given
by Srad (t|σ), see Eq. S43. Because Srad (t|σ) decays much
faster than Srad (t|eq) (see Fig. S1), Srad (t|eq) can be
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FIG. S1. Illustration of timescale separation, which underlies
the validity of our theory and provides the motivation for the
simple-coarse-grained model. The survival probability of a
free receptor surrounded by only one ligand molecule which
initially is at contact, Srad (t|σ) (blue dashed line), decays
much more rapidly than the survival probability for a free re-
ceptor that is initially surrounded by an equilibrium, uniform

distribution of ligand molecules, Srad (t|eq) = e−c
∫ t
0 krad(t′)dt′

(solid red line). This shows that the time a molecule spends
near the receptor (given by the decay of Srad(t|σ)) is very
small compared to the average time on which molecules ar-
rive from the bulk (given by τoff =

∫∞
0
dt′Srad (t′|eq)). In-

deed, on this timescale, a ligand molecule near the receptor
effectively either instantly (re)binds the receptor or diffuses
into the bulk. This separation of timescales means that re-
binding interference occurs only rarely (see also Fig. S3) and
that assumption I of our theory, Eq. S42, is satisfied; it also
makes it possible to integrate out the rebindings. The fig-
ure also shows that Srad (t|eq) is well approximated by its
long-time behavior limt→∞Srad (t|eq) ≈ e−konct (dotted grey
line). This means that bulk molecules arrive at the receptor
in a memoryless fashion at a constant rate konc and that as-
sumption II is satisfied. Parameters: σ = 10 nm, c = 0.4µM,
D = 1µm2s−1, ka = 75µM−1s−1, kD = 75µM−1s−1.

well approximated by its long-time limit Srad (t|eq) ≈
e−konct. This means that also assumption II is satisfied.

We now address both assumptions quantitatively.

Assumption I: the equilibrium assumption

As discussed in the main text, the equilibrium assump-
tion, Eq. 9 of the main text (Eq. S42), holds when there
is no rebinding interference. To address the probability of
rebinding interference, we first study the propensity for
receptor binding given that a ligand molecule has just
dissociated and now is at contact with the receptor; the
other molecules have the equilibrium, uniform distribu-
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R
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FIG. S2. The ratio of the change in Srad due to a bulk binding
and a rebinding of a dissociated ligand particle; this is the
ratio of the two terms on the right-hand-side of Eq. S70. The
bulk dominates the propensity function already at very small
t. Parameters: σ = 10 nm, c = 0.4µM, Dv = 1µm2 s−1,
ka = 75µM−1 s−1.

tion. From Eq. 9 of the main text (Eq. S42) we have

dSrad (t|σ)

dt
=

bulk−binding︷ ︸︸ ︷
Srad (t|σ)

dSrad (t|eq)

dt
+

rebinding︷ ︸︸ ︷
Srad (t|eq)

dSrad (t|σ)

dt
. (S70)

This is the propensity function for receptor binding, i.e.
the probability that a receptor with a ligand molecule
at contact and surrounded by a uniform distribution of
ligand molecules, binds a ligand molecule for the first
time at a later time t. The first term is the probability
that this ligand molecule is a molecule from the bulk,
while the second gives the probability that this is the
ligand molecule that was in contact. Fig. S2 shows the
ratio of these two terms. It is seen that only at very
short times, rebindings dominate the bulk bindings. For
long times, receptor binding is completely dominated by
the binding of molecules from the bulk, which in our
theory, as well as in the simulations, bind the receptor in
a memoryless fashion (see below for further details).

Eq. S70 allows us to derive an expression for the prob-
ability pint that an interference occurs. Here, interference
is defined as an event in which the binding of a molecule
from the bulk pre-empts, and thereby prevents, the re-
ceptor rebinding of a molecule that has just dissociated
from the receptor. If the unbound receptor-ligand pair
at contact is surrounded by an equilibrium distribution
of ligand molecules, then the probability that a ligand
molecule from the bulk does not interfere with the recep-
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FIG. S3. Probability pint (red dash-dotted line) that a lig-
and molecule from the bulk interferes with the receptor re-
binding of a dissociated ligand molecule as a function of the
concentration c (a) and diffusion constant D (b). The prob-
ability 1 − pint of no interference (black line) consists of two
terms (see Eq. S71): the probability p∗reb that the dissoci-
ated ligand molecule rebinds the receptor before a molecule
from the bulk does (dashed black line) and the probability
pesc = Srad(∞|σ) = kD/(ka + kD) = 1 − preb that it escapes
into the bulk (dashed gray line; second term). It is seen that
for concentrations c . µM bulk molecules hardly interfere
with the receptor rebinding of dissociated ligand molecules.
This is the motivation for the simplified model of Fig. 3 of
the main text. In the simplified coarse-grained model, the
probability of rebinding is approximated as preb = 1− pesc ≈
Srad(t → ∞|σ) = ka/(ka + kD) (solid blue line); this corre-
sponds to assuming that in the expression for preb, the first
term on the right-hand side of Eq. S71, Srad (t|eq) ≈ 1. See
also Fig. S1. Parameters: ka = 75µM−1s−1, σ = 10 nm;
in panel a) D = 1µm2s−1 and kD = 75µM−1s−1; because
ka = kD, preb = pesc = 0.5; in panel b) c = 0.4µM.

tor rebinding of the ligand molecule at contact, is

1− pint = −
∫ ∞

0

dSrad (t|σ)

dt
Srad (t|eq) dt+ Srad (∞|σ) .

(S71)

Here the first term on the right-hand-side is the integral
of the second term on the right-hand-side of Eq. S70 — it
is the probability that the ligand molecule which has just
dissociated from the receptor rebinds the receptor before
a ligand molecule from the bulk does; the second term
Srad(∞|σ) is the probability that the ligand molecule at
contact (with no other ligand molecules present) escapes
into the bulk — when the ligand at contact escapes into
the bulk, then, by definition, it does not rebind and re-
bindig interference therefore does not arise. Combining
the above expression with Eq. S70 shows that the prob-
ability of rebinding interference is

pint = −
∫ ∞

0

dt [Srad (t|σ)− Srad (∞|σ)]
dSrad (t|eq)

dt
,

(S72)

where [Srad (t|σ)− Srad (∞|σ)] dSrad (t|eq) /dt is the
probability that a molecule from the bulk binds the re-
ceptor before the ligand molecule which started at con-
tact and that would have rebound the receptor if there

were no other ligand molecules, does. Fig. S3 shows
that for biologically relevant concentrations and diffusion
constants, the probability of rebinding interference, pint,
is very small, which means that the central assumption
holds.

Assumption II: Survival probablity of a receptor
surrounded by an equilibrium distribution of

particles

The second assumption is that the Laplace transform
of Srad (t|eq) is given by Eq. 12 of the main text and
Eq. S54 of the SI. As mentioned above, this expression
captures both the short- and long-time limit of the sur-
vival probabiliy. Fig. S1 illustrates, however, that biolog-
ically relevant concentrations are so low that, to a very
good approximation, the survival probability is given
by its long-time limit: Srad (t|eq) = e−c

∫ t
0
krad(t′)dt′ ≈

e−konct. This means that the molecules other than the
one which has dissociated last bind, to an excellent ap-
proximation, the receptor in a memoryless fashion with
a constant rate konc.

We can quantify this approximation further by investi-
gating the mean unbound time τoff =

∫∞
0

Srad (t|eq) dt =

Ŝrad (s = 0|eq); this is the mean waiting time for bind-
ing. Eq. S50 shows that the central approximation of
our theory, Eq. S42 (Eq. 9 of the main text), predicts
that the zero-frequency limit of the power spectrum and
hence the correlation time τn and the precision of the
concentration estimate, are determined by n and τoff :

Ĉn(s = 0) = σ2
nnτoff . (S73)

Indeed, because Ĉn(s = 0) = σ2
nτn (see Eq. S15),

τn = nτoff . The exact mean unbound time for a free
receptor surrounded by ligand molecules obeying the
equilibrium distribution is τoff =

∫∞
0

Srad (t|eq) dt =∫∞
0
e−c

∫ t
0
krad(t′)dt′dt. In contrast, the approximation of

Eq. S54 predicts an average unbound time of 1/(konc).
Note that while this is the mean waiting time for Marko-
vian binding with rate konc, the approximation of Eq. S54
does not assume that binding is Markovian for all times—
only in the long-time limit does binding occur with a con-
stant rate. Fig. S4 shows the relative error in the mean
unbound time as a function of the concentration. It is
seen that for biologically relevant concentrations c . µM
the relative error is indeed small, less than 10%.

COMMENTS ON COMPARISON BETWEEN
THEORY AND SIMULATIONS

Our theory accurately predicts the power spectrum
over the full frequency range, even though our simula-
tion box is finite and the theory is for an unbounded
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FIG. S4. The relative error in the average off-time, i.e. the
average waiting time for a new molecule to associate, assum-
ing that the receptor is initially surrounded by a uniform
distribution of ligand molecules. The exact unbound time

τoff ≡
∫∞

0
Srad (t|eq) dt =

∫∞
0
e−c

∫ t
0 krad(t′)dt′dt while Eq. S54

assumes that it is 1/(konc). Eq. S54 does not assume that
binding is Markovian for all times; yet its average waiting
time is equal to that of a Markovian binding process. The
simple, coarse-grained model assumes binding is Markovian
for all times. Note that for c . µM the theory and hence
the coarse-grained model gives a reasonable prediction for
the off time. Parameters: D = 1µm2s−1, ka = 55µM−1s−1,
σ = 10 nm, kD = 75µM−1s−1.

domain. It is well known that in an unbounded system,
the correlation function exhibits an algebraic tail [3, 4].
This is because the relaxation of a fluctuation of the re-
ceptor state involves not only the binding and unbinding
of ligand, but also the diffusive transport of ligand to
and from the receptor. While the binding and unbinding
of ligand continually perturbs the ligand concentration
profile, diffusion counteracts these perturbations, lead-
ing to the relaxation of the concentration profile back
to its equilibrium shape. In an unbounded system, the
relaxation of the concentration profile involves diffusion-
mediated transport of ligand on infinitely long length
and time scales, thereby dominating the relaxation of
the receptor state at long times. This is the origin of
the algebraic tail of the receptor correlation function for
diffusion-influenced reactions in an unbounded system.

In contrast, the simulation box of our system is finite
and the collisions of the ligand molecules with the cell
boundaries randomize their trajectories on time scales
longer than L2/D. Consequently, in the simulations the
bulk molecules thus bind the receptor in a Markovian
fashion at a constant rate at long times, leading to expo-
nential relaxation of fluctuations of the receptor state at
long times.

The correlation function of our theory does exhibit a
small algebraic tail (Fig. S5), which is the remnant of

10−6

10−4

10−2

100

10−2 10−1 100 101

C
(t
)/
(σ

2 n
)

t[s]

t−3/2

C(t): Eq. S33

exp [−(konc + koff )t]

FIG. S5. The correlation function of our theory (black
solid line) compared with that of a random telegraph pro-
cess (red dotted curve). At long times, our theory exhibits
a small algebraic tail, which is the remnant of Srad(t|σ) in
Eq. S42. D = 1µm2s−1, ka = 75µM−1s−1, σ = 10 nm,
kD = 75µM−1s−1, c = 0.4µM.

the factor Srad(t|σ) in Eq. S42—the probability that a
free receptor with a single molecule at contact is still free
at a later time t in an unbounded system. However, in
Eq. S42 we assume that the other ligand molecules, form-
ing the “bulk” with survival probability Srad (t|eq), do
have a uniform distribution. At long times t� τm these
molecules will associate with the receptor in a memory-
less fashion with a constant rate konc, as described above
(Fig. S1). Moreover, in this limit they dominate receptor
binding (Fig. S2), as a result of which the algebraic tail
of our theory is very small—smaller than observed for
diffusion-influenced reactions in an unbounded domain
[3, 4]. Both in our theory and our simulations, at long
times the receptor dynamics is thus to a good approxi-
mation a random telegraph process with an on rate konc
and an off rate koff .

TEST FOR HIGHER CONCENTRATIONS

Fig. S6 shows the zero-frequency limit of the power
spectrum Pn(ω → 0) for two higher concentrations,
c = 4µM and c = 36µM, respectively. While for higher
concentrations, it becomes increasingly difficult to ob-
tain good statistics, our results suggest that for concen-
trations up to at least c = 36µM, our theory accurately
predicts the precision by which chemical concentrations
can be measured.
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FIG. S6. The zero-frequency limit of the power spectrum as
a function of the receptor occupancy n for a concentration
and box size of c = 4µM and L = 0.25µm (panel a) and
c = 36µM and L = 0.80µm (panel b), respectively. The
red dots show the simulation results, while the red line shows
the prediction of our theory. It is seen that the agreement
is good, even for the highest concentration. In contrast, the
result of Bialek and Setaygeshar deviates markedly from our
results. Parameters: ka = 552µM−1s−1; σ = 10nm and D =
1µm2s−1, such that kD = 75µM−1s−1. The occupancy n is
varied by changing kd.

SUPPORTING REFERENCES

[1] Agmon, N., and Szabo, A. (1990). Theory of reversible
diffusion-influenced reactions. J. Chem. Phys. 92, 5270-
5284.

[2] Rice, S. A., (1985). Diffusion-limited reactions. Elsevier,
Amsterdam.

[3] Popov, A. V., and Agmon, N. (2001). Three-dimensional
simulations of reversible bimolecular reactions: The simple
target problem. J. Chem. Phys. 115, 8921-8932.

[4] Gopich, I. V., and Szabo, A. (2002). Kinetics of reversible
diffusion influenced reactions: The self-consistent relax-
ation time approximation. J.Chem. Phys. 117, 507-517.


