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ABSTRACT Biological systems often have to measure extremely low concentrations of chemicals with high precision. When
dealing with such small numbers of molecules, the inevitable randomness of physical transport processes and binding reactions
will limit the precision with which measurements can be made. An important question is what the lower bound on the noise would
be in suchmeasurements. Using the theory of diffusion-influenced reactions, we derive an analytical expression for the precision
of concentration estimates that are obtained by monitoring the state of a receptor to which a diffusing ligand can bind. The vari-
ance in the estimate consists of two terms, one resulting from the intrinsic binding kinetics and the other from the diffusive arrival
of ligand at the receptor. The latter term is identical to the fundamental limit derived by Berg and Purcell (Biophys. J., 1977), but
disagrees with a more recent expression by Bialek and Setayeshgar. Comparing the theoretical predictions against results from
particle-based simulations confirms the accuracy of the resulting expression and reaffirms the fundamental limit established by
Berg and Purcell.
INTRODUCTION
The evidence is accumulating that sensory systems in
biology often operate near the fundamental limit set by
the noise of counting signal molecules. Receptors in our
visual system can detect single photons (1), some animals
can smell single molecules (2), swimming bacteria can
respond to the binding and unbinding of only a limited
number of molecules (3,4), and eukaryotic cells can respond
to a difference in ~10 molecules between the front and the
back of the cell (5). Recent experiments suggest that the
precision of the embryonic development of the fruitfly
Drosophila is close to the limit set by the available number
of regulatory proteins (6–8). This raises the question of what
is the fundamental limit to the precision of chemical con-
centration measurements.

In their classic article, Berg and Purcell (3) considered a
scenario in which a cell measures the concentration c of a
ligand by monitoring the occupation state of the receptor
molecules to which the ligand molecules bind and unbind.
A central result is the precision with which the ligand
concentration c can be inferred from the time-averaged
occupancy of a single receptor. The analysis of Berg and
Purcell predicts that in the limit at which the integration
time T is much longer than the correlation time of the recep-
tor state, the expected uncertainty in the time-averaged
occupancy resulting from the random nature of diffusion
is given by

dn

n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ
2DscT

r
; (1)
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where n is the true mean occupancy, s is the receptor-ligand
binding cross section, and D is the diffusion constant of the
ligand. The uncertainty or expected error in a corresponding
estimate of the concentration is related to the noise in the
observed occupancy via the gain dn=dc,

dc ¼ dc

dn
dn; (2)

yielding Berg and Purcell’s expression for the limit to the
precision of concentration measurements by a single recep-
tor (see Eq. 52 in Berg and Purcell (3)):

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

4Dscð1� nÞT

s
: (3)

This result can be understood intuitively by noting that
4Dsc is the flux of ligand molecules arriving at the receptor
and 1� n is the probability that the receptor is free (3).
Therefore, 4Dscð1� nÞ is the effective rate of ligand
binding if every collision between ligand and free receptor
leads to successful binding. Berg and Purcell (3) argue
that their result also holds for reactions that are not deeply
in the diffusion-limited regime. After an unsuccessful recep-
tor-ligand encounter, they argue, the ligand will rapidly
collide with the receptor again and again until it binds the
receptor, and these rounds of encounters can be captured
by renormalizing s.

The argument of Berg and Purcell ignores, however, that
after an unsuccessful collision with the receptor the ligand
molecule may diffuse back into the bulk, and a different
ligand molecule may subsequently bind. Moreover, a ligand
molecule that has just dissociated from the receptor may
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rapidly rebind, or it may diffuse away from the receptor into
the bulk. It thus remains unclear to what extent the result of
Berg and Purcell applies to binding reactions that are not
diffusion-limited.

Bialek and Setayeshgar (9) sought to generalize the result
of Berg and Purcell by taking into account ligand-receptor
binding dynamics. They considered a model in which
the ligand molecules can diffuse, bind the receptor upon
contact with an intrinsic association rate ka, and unbind
from the receptor with an intrinsic dissociation rate kd.
Invoking the fluctuation-dissipation theorem, they linear-
ized the nonlinear reaction-diffusion equation, to obtain
the following result for the fractional uncertainty in the
estimate for the concentration (Eq. 32 in (9)):

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pDscT
þ 2

kacð1� nÞT

s
: (4)

The first term arises from the stochastic arrival of the ligand
molecules at the receptor by diffusion, whereas the second
term is due to the intrinsic stochasticity of the binding
kinetics of the receptor. Indeed, even in the limit that
D / N, such that the concentration at the receptor is con-
stant, this concentration can still not be measured with infin-
ite precision because the receptor stochastically switches
between the bound and unbound states, leading to noise in
the estimate of the receptor occupancy. This term is absent
in Eq. 3 because Berg and Purcell assume that the binding
reaction is fully diffusion-limited, meaning that the intrinsic
rates ka and kd go to infinity.

The first term of Eq. 4 should be compared with Eq. 3.
This term is considered to be the fundamental limit to the
accuracy of measuring chemical concentrations via a single
receptor, because it presents a noise floor that is solely due
to the physics of diffusion, independent of the binding
kinetics (9). Indeed, in the limit that the reaction is diffu-
sion-limited, the second term in Eq. 4 is zero, and both the-
ories should yield the same result. However, it is clear that in
addition to the geometrical factor p (which comes from the
fact that Berg and Purcell model the receptor as a reactive
disk, whereas Bialek and Setayeshgar take the receptor to
be a spherical particle), the expressions differ by a factor
1=ð2ð1� nÞÞ. This difference can have marked implica-
tions. Although the Bialek-Setayeshgar expression predicts
that the uncertainty remains bounded even in the limit that
n/1, the Berg-Purcell expression suggests that it diverges
in this limit.

Here, we rederive the limit to the accuracy of sensing via
a single receptor (10), borrowing heavily from the work of
Agmon and Szabo (11) on diffusion-influenced reactions.
Our expression is identical to that of Berezhkovskii and
Szabo (12), who have recently independently derived this
limit for an arbitrary number of receptors, when there is
one receptor. Like the expression of Bialek and Setayeshgar
(Eq. 4), our expression consists of two terms: One term
describes the effect of the diffusive transport of the ligand
molecules to and from the receptor, and the other describes
the effect of the intrinsic binding and unbinding kinetics of
the receptor. Although the second term agrees with that of
Bialek and Setayeshgar, the first does not agree with their
expression but does agree with the expression of Berg and
Purcell (again apart from the geometric factor).

We then perform extensive tests of these expressions
by performing particle-based simulations using Green’s
function reaction dynamics (GFRD), which is an exact
scheme for simulating reaction-diffusion systems at the
particle level (13–15). The simulation results agree very
well with our expression and that of Berezhkovskii and
Szabo (12) for the full range of conditions that we consid-
ered, which spans the biologically relevant regime. This
means that the Berg-Purcell limit is the most accurate
expression for the fundamental limit to measuring chemical
concentrations.

We end by examining the assumptions of our theory un-
der biologically relevant conditions. This naturally suggests
a simple but intuitive model. This model not only explains
the origin of the factor 1=ð2ð1� nÞÞ in the Berg-Purcell
expression, but also shows how their expression can be
generalized to reactions that are not diffusion-limited by
integrating out the rapid rebindings of dissociated mole-
cules. The model also elucidates that rebindings do not
contribute to the accuracy of sensing, because their likeli-
hood does not depend on the concentration.
METHODS AND THEORY

We consider a single receptor A in a volume V that is surrounded by a large

number NB of noninteracting ligand molecules B at concentration c¼ NB/V.

We consider the pseudo first-order limit, meaning that NB >> NA ¼ 1 and

V / N. Without loss of generality, we may assume that the receptor is

static and located at the origin, while the ligand molecules diffuse with

diffusion constant D. A ligand molecule can bind a free receptor with an

intrinsic association rate ka when the two come in contact at the contact

distance s, which is the sum of the radii of the two respective molecules.

A bound ligand molecule can dissociate from the receptor with an intrinsic

dissociation rate kd. The state of the receptor is denoted by the binary var-

iable n(t), which is one if the receptor is bound to a ligand at time t and zero

otherwise. We note that this model is identical to that of Bialek and Se-

tayeshgar (9) for the scenario of a single receptor molecule.

Following Berg and Purcell (3) and Bialek and Setayeshgar (9), we

imagine that the cell estimates the concentration c from the receptor occu-

pancy n(t) integrated over an integration time T, nT ¼ T�1
R T
0
nðtÞdt. In the

limit that the integration time T is much longer than the correlation time of

n(t), tn, the variance in our estimate nT of the true mean occupancy n is

given by

ðdnÞ2z2s2
ntn
T

¼ Pnðu ¼ 0Þ
T

¼ 2Re
�bCnðs ¼ 0Þ�

T
; (5)

where s2n ¼ hn2i � hni2 ¼ nð1� nÞ is the instantaneous variance and Pn(u)

and bCnðsÞ are, respectively, the power spectrum and the Laplace transform

of the correlation function Cn(t) of n(t). The uncertainty in the estimate for

the concentration c can then be obtained from Eqs. 2 and 5. In Eq. 2, the
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gain is dc=dn ¼ c=ðn� n2Þ, because n ¼ c=ðcþ KDÞwith KD the receptor-

ligand dissociation constant.

The correlation function of any binary switching process is given by

CnðtÞ ¼ p0�
�
p�j�ðtÞ � p0�

�
; (6)

where p0�hn is the equilibrium probability for the bound state ( � ) and
p�j�ðtÞ ¼ hnðtÞnð0Þi=n is the probability the receptor is bound at t ¼ t,

given it was bound at t ¼ 0. To obtain the correlation function, we thus

need p�j�ðtÞ. It is convenient to focus on the conjugate probability

S revðtj�Þ ¼ 1� p�j�ðtÞ; (7)

which is the probability that the receptor is free at time t given that it was

bound at t ¼ 0. Following Agmon and Szabo (11), we use the subscript

‘‘rev’’ to indicate that we consider a reversible reaction, meaning that in

between t ¼ 0 and t the receptor may bind and unbind ligand a number

of times. The probability that a receptor-ligand pair dissociates between

t0 and t0 þ dt0 to form an unbound pair at contact is kd[1�S rev(t
0j*)]dt0,

whereas the probability that the free receptor with a ligand molecule at con-

tact at time t0 is still unbound at time t > t0 is S rad(t � t0js). The subscript
‘‘rad’’ means that we now consider an irreversible reaction (kd ¼ 0), which

can be obtained by solving the diffusion equation using a radiation bound-

ary condition (11). Hence, S rev(tj*) is given by (11)

S revðtj � Þ ¼ kd

Z t

0

½1� S revðt0j � Þ�S radðt � t0jsÞdt0: (8)

We emphasize that up to this point no approximation has been made. The

question now is what is S rad(tjs), which is the quantity needed to solve

Eq. 8. To address this, we introduce two new quantities:

1. S rad(tjeq), which is the probability that a receptor initially is free and

surrounded by an equilibrium distribution of ligand molecules, and it

remains free until at least a later time t; and

2. Srad(tjs), which is the probability that a free receptor initially surrounded
by only one single ligand molecule at contact is still unbound at a later

time t.

The quantity Srad(tjs) thus refers to a system consisting of a receptor with

only one ligand molecule, which initially is at contact with the receptor,

whereas S rad(tjs) refers to a system of a receptor with NB R 1 ligand mol-

ecules, one of which is at contact initially.

In general, it is not possible to obtain an exact analytical expression for

S rad(tjs), the quantity that we need (Eq. 8). To illustrate this, imagine a

bound receptor-ligand pair that is surrounded by an equilibrium, i.e., a

statistically uniform distribution of ligand particles. When this receptor-

ligand pair dissociates to form a receptor-ligand pair at contact surrounded

by an equilibrium distribution of ligand molecules, then the probability that

the receptor is still unbound at a later time t is given by (11)

S radðtjsÞ ¼ S radðtjeqÞSradðtjsÞ: (9)

Now, the ligand molecule at contact may either rebind the receptor or

diffuse away from it. If it rebinds the receptor, then after the next dissoci-

ation event, the probability that the receptor will remain free for at least

another time t will again be given by Eq. 9. Equation 9 breaks down

when the ligand molecule at contact instead diffuses away from the receptor

and another ligand molecule binds the receptor before the first ligand has

relaxed to equilibrium. Indeed, the process of receptor binding generates

nontrivial spatio-temporal correlations between the positions of the ligand

molecules, which depend on the history of the association and dissociation

events. This impedes an exact solution of the problem. However, if the

dissociation rate kd is low then it becomes reasonable to assume that after
Biophysical Journal 106(4) 976–985
each dissociation event, the unbound receptor-ligand pair at contact is

surrounded by an equilibrium distribution of ligand (11), in which case

the survival probability is given by Eq. 9. This is the crucial assumption

that we make in our analysis.

With the assumption of Eq. 9, Eq. 8 can now be solved. For a pseudo-

first-order irreversible reaction with a static target, S rad(tjeq) of Eq. 9 is

given by Rice (16) (see also the Supporting Material) as

S radðtjeqÞ ¼ e
�c
R t

0
kradðt0Þdt0 ; (10)

where krad(t) is the time-dependent rate coefficient. Here, ckrad(t) is the rate

at which ligand molecules will bind a free receptor at time t, given that

the ligand distribution at time t ¼ 0 was the uniform, equilibrium, distribu-

tion. As before, the subscript ‘‘rad’’ refers to a radiation boundary condition,

meaning that if a ligand molecule and the receptor come into contact,

they react with a finite rate ka (11). The quantity Srad(tjs) in Eq. 9 is

via detailed balance (and the backward Smoluchowski equation) related

to krad(t): krad(t) ¼ kaSrad(tjs) (11) (see also the Supporting Material).

Together, these relations yield a simple expression for the Laplace trans-

form of S rad(tjs) in terms of the Laplace transform bS radðsjeqÞ of

S rad(tjeq) (see the Supporting Material). Substituting this in the solution

of Eq. 8 in the Laplace domain allows us to obtain the following expression

for the Laplace transform of the correlation function in terms of bS radðsjeqÞ
(see the Supporting Material):

bCnðsÞ ¼ s2
n

ckatc bS radðsjeqÞ
1� kdtcs bS radðsjeqÞ

; (11)

where tc ¼ (kac þ kd)
�1 is the correlation time of the intrinsic receptor

switching dynamics, i.e., the correlation time of the receptor occupancy

when receptor-ligand association is reaction-limited and the effect of diffu-

sion can be neglected.

To obtain an analytically closed form for the correlation function, we

require an expression for bS radðsjeqÞ. We use

s bS radðsjeqÞz
�
1þ cbk radðsÞ��1

; (12)

which correctly captures the short- and long-time limit of S rad(tjeq) (11)
(see the Supporting Material). We exploit thatbk radðsÞ ¼ kabkabsðsÞ=�ka þ sbkabsðsÞ�
(see the Supporting Material), where

bkabsðsÞ ¼ 4psD
�
1þ s

ffiffiffiffiffiffiffiffi
s=D

p �.
s

is the Laplace transform of the time-dependent diffusion-limited rate con-

stant kabs(t) (16). Here, the subscript ‘‘abs’’ refers to the absorbing boundary

condition, meaning that ka /N, where each ligand-receptor collision will

immediately lead to binding; ckabs(t) is thus the rate at which ligand mole-

cules collide and associate with the receptor at time t, given that they start

from the equilibrium (uniform) distribution. Substituting Eq. 12 in Eq. 11

yields (see the Supporting Material)

bCnðsÞ ¼ s2
n

t0cðsÞ
st0cðsÞ þ 1

; (13)

where t0c(s) is the intrinsic correlation time tc renormalized by the concen-

tration fluctuations (9),
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tc
0ðsÞ ¼ tcð1þ SðsÞÞ; SðsÞ ¼ ka

kD
�
1þ ffiffiffiffiffiffiffi

stm
p �; (14)

with the diffusion-limited rate constant kD ¼ kabs(t /N) ¼ 4psD and the

molecular timescale tm ¼ s2/D. The correlation time tn of the receptor is

then given by tn ¼ ðs2nÞ�1 bCnðs ¼ 0Þ (Eq. 5) as

tn ¼ 1

koncþ koff
; (15)

where kon and koff are the renormalized association and dissociation rates

kon ¼
	
1

ka
þ 1

kD


�1

¼ kakD
ka þ kD

; (16)

	
1 K


�1
k k
koff ¼
kd

þ eq

kD
¼ d D

ka þ kD
; (17)

and Keq = ka/kd ¼ K�1
D is the equilibrium constant (11). The effective

association rate kon is the long-time limit of the time-dependent rate

coefficient krad(t): kon ¼ krad(t / N); it takes into account the finite rate

of diffusion and the finite probability of binding when receptor and ligand

are at contact. Similarly, koff is the effective rate at which a ligand dissoci-

ates from the receptor and diffuses into the bulk. Our simple coarse-grained

model presented below (see Results) gives an intuitive derivation of these

effective rate constants.

The uncertainty in the estimate of the concentration can be obtained by

combining Eq. 13 with Eqs. 2 and 5, yielding our principal result

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2psDcð1� nÞT þ 2

kacð1� nÞT

s
: (18)

The first term describes the uncertainty in the estimate of c that stems from

the stochastic diffusive arrival of the ligand molecules, whereas the second

term describes variability that results from the intrinsic binding dynamics of

the receptor. If the receptor-ligand association reaction is fully reaction-

limited, i.e., ka,kd/ 0 orD/N, then the uncertainty in the concentration

estimate is dominated by the latter term. Conversely, if the reaction is diffu-

sion-limited, ka,kd/N or D/ 0, then the first term dominates the uncer-

tainty, which is limited by the diffusive arrival and departure of the ligand

molecules to and from the receptor.

It is clear that the second term in Eq. 18 is identical to that in the expres-

sion of Bialek and Setayeshgar (9), Eq. 4. Yet, the first term, which deter-

mines the fundamental limit, is different: the expression of Bialek and

Setayeshgar misses a factor 1=ð2ð1� nÞÞ. The Berg-Purcell expression

does contain this factor, and indeed, apart from a geometrical factor, our

expression is identical to theirs in the limit that the reaction is fully diffu-

sion-limited.
RESULTS

Simulation results

To test our theory, we have performed particle-based simu-
lations. A key quantity of our theory is bCnðsÞ, Eq. 13,
because the precision of our concentration estimate directly
follows from this quantity and the gain dn=dc (see Eqs. 2
and 5). We therefore compare the power spectrum,
PnðuÞ ¼ 2Re
�bCnðs ¼ iuÞ�

with bCnðsÞ given by Eq. 13, to that obtained from simula-
tions. The simulation scheme should not only describe the
diffusive transport at large length and timescales, but also
capture the (re)binding dynamics at short scales. Moreover,
to obtain an accurate estimate for the zero-frequency limit of
the power spectrum, which is computationally challenging,
the scheme should also be efficient. We have therefore
employed Green’s function reaction dynamics (GFRD)
(13,15,17). Like Brownian dynamics (overdamped Lange-
vin dynamics), GFRD simulates reaction-diffusion systems
at the particle level; in essence, both are numerical pro-
cedures for solving the Smoluchowski equation (17). How-
ever, while Brownian dynamics uses a fixed time-step to
propagate the particles, GFRD is an asynchronous, event-
driven kinetic Monte Carlo scheme.

The central idea of GFRD is to decompose the many-
body reaction-diffusion problem, which cannot be solved
analytically, into sets of one- and two-body problems that
can solved analytically using Green’s functions (13,17). In
the recent version of GFRD, this decomposition is per-
formed by putting single particles and pairs of particles in
mathematical domains (18), for which the reaction-diffusion
problem can be solved exactly (15). This yields for each
domain an event-type, which is either a reaction or a particle
leaving the domain, and an event-time, which is when this
event will happen. These events are then executed in chro-
nological order. Importantly, the mathematical domains
are nonoverlapping, which means that the stochastic reac-
tion-diffusion processes of the respective domains are inde-
pendent. This makes GFRD an exact scheme for simulating
reaction-diffusion problems at the particle level (15).
Because the scheme is event-driven, it is also very fast: at
the concentrations considered here, GFRD is up to 4–6
orders-of-magnitude faster than Brownian dynamics
(13,15) (for more details, see www.GFRD.org). For this
study, we exploited the spherical symmetry of the system
and that the ligand molecules only interact with the receptor,
but not among themselves.

The computational model is identical to that of our
theory, albeit in a finite volume. It consists of a static single
receptor in the center of a spherical simulation box with
diameter L, surrounded by ligand molecules that diffuse
with diffusion constant D. A ligand molecule that is in
contact with a free receptor at the contact distance s can
associate with the receptor with an intrinsic association
rate ka and then dissociate from it with an intrinsic dissoci-
ation rate kd; after dissociation, the ligand molecule is put at
contact.

Fig. 1 shows the power spectra as obtained from the
simulations (black circles) together with the prediction of
our theory (solid red line; Eq. 13), for n ¼ 0:5 and c ¼
0.4 mM. In the Supporting Material, we show results for
Biophysical Journal 106(4) 976–985

http://www.GFRD.org


FIGURE 1 The power spectrum of the receptor state Pn(u) for c ¼
0.4 mM. The simulation results (black circles) agree well with the theoret-

ical prediction of Eq. 13 (solid red line). At high frequencies u > 1/tm ¼
D/s2, the effect of diffusion is negligible and the receptor dynamics is

that of a Markovian switching process with intrinsic rates kac and kd
(dashed red line), while at low frequencies it is that of a Markovian switch-

ing process with effective rates konc and koff, respectively (solid gray line).

The zero-frequency limit determines the precision of the concentration

estimate. Parameters: n ¼ 0:5, D ¼ 1 mm2 s�1, s ¼ 10 nm, L ¼ 1 mm,

and ka ¼ 552 mM�1 s�1. To see this figure in color, go online.

FIGURE 2 The zero-frequency limit of the power spectrum as a function

of the average receptor occupancy n for c¼ 0.4 mM; n is varied by changing

kd. It is seen that the agreement between the theoretical prediction of Eq. 13

and the simulation results is very good (red line). In contrast, the prediction

of Bialek and Setayeshgar (9) (black line) differs markedly from our results.

Parameters: see Fig. 1. To see this figure in color, go online.
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higher concentrations. The parameters have been chosen
such that they are biologically meaningful, yet bring the
system in the diffusion-limited regime—this makes it
possible to probe the fundamental limit set by diffusion.
Specifically, the diffusion constant D¼ 1 mm2/s is compara-
ble to that of intracellular proteins (19,20).

Fig. 1 shows that the agreement between theory and simu-
lation is very good over essentially the full frequency range.
The high-frequency regime corresponds to the intrinsic
switching dynamics of the receptor. In this regime, diffusion
hardly plays any role and the receptor dynamics is domi-
nated by the binding of ligand molecules that are essentially
in contact with the receptor; consequently, the power spec-
trum is well approximated by that of a binary switching
process with uncorrelated exponentially distributed waiting
times with the intrinsic correlation time tc ¼ (kac þ kd)

�1

(red dashed line). The theory also accurately describes the
intermediate frequency regime, which starts at um ¼
1/tm ¼ Ds2. In this regime a ligand molecule, after dissoci-
ation from the receptor, manages to diffuse away from the
receptor over a few molecular distances s, but then rebinds
the receptor before another ligand molecule from the bulk
does. The low-frequency regime of the power spectrum
corresponds to the regime in which, after receptor dissocia-
tion, the ligand molecule diffuses into the bulk and, most
likely, another molecule from the bulk binds the receptor.
In this regime, the spectrum is well approximated by that
of a memoryless switching process with the same effective
correlation time as that of our theory, tn ¼ t0c (s ¼ 0) ¼ (kon
c þ koff)

�1 (gray solid line).
The most important point of the power spectrum is at

zero-frequency, Pn(u ¼ 0), because this determines the
correlation time of the receptor and hence the uncertainty
Biophysical Journal 106(4) 976–985
in our estimate of the average receptor occupancy n and
the concentration c, following Eqs. 2 and 5. Fig. 2 shows
Pn(u ¼ 0) as a function of the average receptor occupancy
n at a concentration of 0.4 mM. (For higher concentrations,
see the Supporting Material.) It is seen that the agreement
between the theory and simulations is excellent. Fig. 2
also shows the prediction of Bialek and Setayeshgar for
Pn(u ¼ 0) (9). Although their analysis predicts that
Pn(u ¼ 0) ¼ P1�n(u ¼ 0), our results show that the de-
pendence of Pn(u) on n is nonsymmetric, which reflects
the fact that if the receptor is free more often, more binding
events can be counted, leading to a more accurate estimate
of the concentration. Because the Berg-Purcell formula
in Eq. 3 directly follows from our expression for
Pnðu ¼ 0Þ ¼ 2Re½bCnðs ¼ 0Þ�, via Eqs. 2, 5, and 13, we
conclude that the Berg-Purcell limit provides an accurate
upper bound on the precision with which chemical concen-
trations can be measured.
Validity of assumptions under biological
conditions

The central assumption of our theory is Eq. 9, which states
that after dissociation the unbound receptor-ligand pair is
surrounded by a uniform distribution of ligand molecules.
This assumption breaks down when the following condi-
tions apply:

Condition 1

After receptor dissociation, the rebinding of the ligand
molecule to the receptor is preempted by the receptor bind-
ing of another, second, ligand molecule.

Condition 2

This second ligand molecule dissociates from the receptor
before the first has diffused into the bulk.
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We argue that under biologically relevant conditions,
neither condition arises and, therefore, the key assumption
of our analysis holds.

A rebinding trajectory of a ligand molecule that has just
dissociated from the receptor is very short on the timescale
at which molecules arrive from the bulk at the concentra-
tions considered here (see Fig. S1 in the Supporting Mate-
rial). Consequently, the likelihood that another molecule
interferes with such a rebinding event is negligible (see
Fig. S3); a dissociated ligand molecule rebinds the receptor
before it diffuses into the bulk as often as when it was the
only ligand molecule present in the system. Condition 1 is
thus not met and the central assumption, Eq. 9, holds.

Occasionally rebinding interferences will occur, and
Condition 1 is met. However, we argue that Eq. 9 is still
likely to hold, because Condition 2 is not met: a ligand
molecule is typically bound long enough for the previously
bound molecules to diffuse into the bulk. Consider a detec-
tor that binds a ligand with a cross-section s ¼ 10 nm, a
diffusion constant D ¼ 1 mm2 s�1, and an intrinsic rate ka
that equals the diffusion-limited rate kD ¼ 75 mM�1 s�1,
yielding an effective association rate kon ¼ 38 mM�1 s�1,
consistent with experimentally measured association rates
(21). If the ligand is present at a biologically relevant con-
centration of c ¼ 1 mM, then, for n ¼ 0:5, the time a ligand
molecule is bound to the receptor is td¼ kd

�1z 0.01 s. Dur-
ing this time, the previously bound ligand molecule, on
average, has traveled at least a distanceffiffiffiffiffiffiffiffiffiffi

6Dtd
p

z0:3 mm:

This corresponds to ~4 times the average distance be-
tween the ligand molecules at this concentration, meaning
that, effectively, the ligand has diffused into the bulk. For
lower concentrations, the dissociation time will be longer
at constant n, and the previously bound ligand molecule
will have penetrated the bulk even deeper by the time that
the newly bound ligand molecule dissociates. We thus
expect that for concentrations up to micromolar, Condition
2 is not met—meaning that even when rebinding inter-
ferences do occasionally arise, and Eq. 9 still holds.

The other approximation of our theory, Eq. 12, ensures
that the short- and long-time behavior of S rad(tjeq) is
described correctly. Importantly, however, under the bio-
logically relevant concentrations considered here, the
receptor-binding rate of ligand molecules starting from a
uniform distribution is so low that to a good approximation
S rad(tjeq) is given by its long-time behavior,
S radðtjeqÞxe�konct (see Fig. S1). The picture that thus
emerges is that after a receptor-ligand dissociation event,
the molecules that are not in contact with the receptor truly
form a bulk reservoir:

1. They have a uniform distribution (Eq. 9), and
2. They bind the receptor in a memoryless fashion with a

constant rate konc.
A simple coarse-grained model

Ultimately, the success of Eq. 9 is due to the fact that the
time a ligand molecule spends near the receptor is very
short compared to the timescale on which ligand molecules
arrive at the receptor from the bulk, (kDc)

�1 (see Fig. S1).
On this timescale a ligand molecule at contact with the
receptor effectively either instantly (re)binds the receptor
with splitting probability preb or escapes into the bulk with
probability pesc ¼ 1 – preb. This observation naturally sug-
gests the following simple two-state model (17), in which
the system switches between a receptor-bound and a recep-
tor-unbound state with effective association and dissociation
rates (see Fig. 3).

To derive the effective dissociation rate, we note that for a
ligand molecule that has just dissociated from the receptor,
the probability that it will rebind the receptor rather
than diffuse away into the bulk is preb ¼ 1 – Srad(Njs) ¼
ka/(ka þ kD). The mean number of rounds of rebinding
and dissociation before the molecule escapes into the bulk
is then
FIGURE 3 Cartoon of the coarse-grained model.

(a) A typical time trace of the receptor state n(t) of

the original system. (b) Time trace of the coarse-

grained model. (Top-left cartoon; red) a successful

and an unsuccessful binding trajectory; (blue) a tra-

jectory inwhich a ligandmolecule undergoes a num-

ber of rounds of receptor dissociation and rebinding

before it escapes into the bulk. The key observation

is that the time amolecule spends near the receptor is

very short on the timescale at which molecules

arrive from the bulk. This makes it possible to inte-

grate out the receptor rebindings and the unsuccess-

ful arrivals of molecules from the bulk, giving the

two-state model of Eq. 19. Fig. S1 in the Supporting

Material quantifies the timescale separation. To see

this figure in color, go online.
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Nreb ¼ ð1� prebÞ
XN

i¼ 0
ipireb ¼ preb=ð1� prebÞ ¼ ka=kD:

The total time ton the ligand is bound to the receptor before
it diffuses away is on average ton ¼ td(1 þ Nreb) and the
effective dissociation rate is koff ¼ 1/ton ¼ kdkD/(ka þ kD),
which is precisely the effective dissociation rate of our the-
ory, Eq. 17.

A molecule that arrives at the receptor from the bulk at a
rate kD may either bind the receptor or escape back into the
bulk. The escape probability is

pesc ¼ 1� preb ¼ SradðNjsÞ ¼ kD=ðka þ kDÞ;

and the average number of times a molecule from the bulk
encounters the receptor before it actually binds is

Nesc þ 1 ¼ ð1� pescÞ
XN

i¼ 0
ipiesc þ 1 ¼ kD=ka þ 1

¼ 1=Nreb þ 1:

The effective rate at which a molecule binds from the bulk is
then

kon ¼ kD=ð1þ NescÞ ¼ kakD=ðka þ kDÞ;

which is the diffusion-limited rate kD times the probability

1� SðNjsÞ ¼ ka=ðka þ kDÞ

that a molecule at contact binds the receptor instead of
diffusing back into the bulk. This is the rate as predicted
by our theory, Eq. 16. We note that the renormalization
of the association and dissociation rates preserves the
detailed-balance condition:

n=ð1� nÞ ¼ kac=kd ¼ konc=koff :

The dynamics of this two-state model is given by

dnðtÞ
dt

¼ koncð1� nðtÞÞ � koffnðtÞ; (19)

which, as Fig. 1 shows, correctly describes the relevant low-
frequency dynamics of the receptor state. From Eq. 19, the
power spectrum and hence, the uncertainty in our concentra-
tion estimate can be obtained straightforwardly:

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

koncð1� nÞT

s
: (20)

Three points are worthy of note:

1. Noting that kon is given by Eq. 16, the principal result of
this article, Eq. 18, is reproduced.

2. For diffusion-limited reactions kon ¼ kD and the expres-
sion of Berg and Purcell, namely, Eq. 3, is recovered.
Biophysical Journal 106(4) 976–985
3. Arguably, however, the most important result is that the
Berg-Purcell expression can also be applied to reactions
that are not diffusion-limited, by replacing kD with kon.

Point 3 is a nontrivial result, because Eq. 20 takes into
account that not every arrival of ligand at a free receptor
leads to binding, and also that upon dissociation a ligand
molecule may rebind the receptor many times before it es-
capes into the bulk. This can be seen by exploiting the
detailed-balance condition and rewriting Eq. 20 as

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

T

	
1

koff
þ 1

konc


s
¼

ffiffiffiffiffiffiffiffi
2tw
T

r
: (21)

This expression has a clear interpretation (see Fig. 3). A
receptor-bound molecule that dissociates from the receptor
may rebind the receptor, but the probability for this to
happen does not depend on the concentration (15). As a
result, a rebinding event does not provide information on
the concentration and should therefore not be counted as a
concentration measurement; it merely increases the receptor
correlation time tn by increasing its on-time from kd

�1 to
k�1
off ¼ k�1

d =ð1þ NrebÞ. After (1 þ Nreb) rounds of dissocia-
tion and rebinding, the molecule escapes into the bulk,
and then another molecule will arrive at the receptor with
a rate kDc. This molecule may return to the bulk or bind
the receptor—in either case, possibly after a number of un-
successful but rapid collisions—such that the net rate at
which a molecule from the bulk binds the receptor is konc.
Importantly, this binding event occurs in a memoryless
fashion and with a rate that depends on the concentration.
Consequently, this event does provide an independent mea-
surement of the concentration. The time tw ¼ 1/koff þ
1/(konc) is thus the average time between independent con-
centration measurements, and T/tw is the total number of
such measurements in the integration time T.
DISCUSSION

Using results from the theory of diffusion-influenced reac-
tions by Agmon and Szabo (11), we have derived the funda-
mental limit for the precision of chemical concentration
measurements via the reversible binding of ligand to a sin-
gle receptor, a common motif in cell signaling. We have
compared our expression to that of Berg and Purcell (3)
and Bialek and Setayeshgar (9) and tested it against parti-
cle-based simulations. The premise of our study and that
of Berg and Purcell (3) and Bialek and Setayeshgar (9) is
that the concentration is estimated from the average receptor
occupancy nT over an integration time T set by the down-
stream network, and inverting the input-output relation
nðcÞ (3,9,22–25). Recently, Endres and Wingreen (26) and
Mora and Wingreen (27) showed that maximum likelihood
estimation can improve this estimate, but it is not clear
whether typical networks do this.
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Our theoretical analysis, as well as that of Berg and
Purcell (3) and Bialek and Setayeshgar (9), assumes that
the total number of ligand molecules in the system is fixed;
the total concentration c is thus constant. Indeed, the only
sources of fluctuations in the receptor state are the diffusion
of ligand to and from the receptor, and the stochastic bind-
ing and unbinding of ligand to and from the receptor. More-
over, all three analyses assume that the ligand molecules are
noninteracting, which is a very reasonable assumption at the
low concentrations considered here. The reason that this is
nonetheless a nontrival many-body reaction-diffusion prob-
lem is due to the interactions of the ligand molecules with
the receptor.

As described in the surrounding text for Eq. 9, due to
these receptor-ligand interactions, the spatial distribution
of ligand molecules, conditioned on the state of the receptor
(or the time since the last receptor binding or unbinding
event), can deviate from the equilibrium uniform distribu-
tion. Only by averaging over the entire ensemble of ligand
distributions, taking into account those corresponding to
both the bound and unbound states of the receptor, is the
uniform equilibrium distribution obtained. The central
assumption of our theory is that after each receptor disso-
ciation event, the receptor and ligand molecule at contact
are surrounded by a uniform, equilibrium distribution of
ligand molecules (see Eq. 9). This assumption makes it
possible to reduce the many-body problem to a pair prob-
lem, in which the ligand molecules bind the receptor inde-
pendently of one another.

Also in the analysis of Berg and Purcell (3), the many-
body reaction-diffusion problem is reduced to a pair prob-
lem. However, the key difference with our analysis is that
their analysis strictly holds only for diffusion-limited reac-
tions, but they argue that it also holds for reactions that
are not diffusion-limited. In essence, they start from the
assumption that the receptor switches between the ligand-
bound and unbound states according to a random telegraph
process with exponentially distributed waiting times, thus
ignoring the rebinding trajectories with algebraic waiting
times. The receptor correlation time tn, needed to obtain
the fundamental limit (see Eq. 5), is in this Markovian
model given by the receptor-ligand association and disso-
ciation rates. Berg and Purcell argue that the association
rate kf in the presence of unsuccessful ligand-receptor colli-
sions can be obtained from the diffusion-limited binding
rate kD ¼ 4psD via a rescaling of the cross-section s, while
the dissociation rate kb can then be obtained from the
detailed balance relation kf cð1� nÞ ¼ kbn. However, the
validity of this Markovian model with the ad hoc rescaling
of kD to get kf remained unclear.

Bialek and Setayeshgar (9) do not assume that the recep-
tor-ligand association rate is diffusion-limited. Indeed, their
physical model is identical to ours: ligand molecules are
noninteracting; their overall concentration is constant;
ligand and receptor associate with a rate ka when at contact,
and dissociate with a rate kd when bound. However, they
analyze their model by writing down the reaction-diffusion
equation, and then solve this equation invoking the fluctua-
tion-dissipation theorem.

Our principal result (Eq. 18) consists of two terms, like
the expression of Bialek and Setayeshgar (Eq. 4): one de-
scribes the effect of the diffusive transport of ligand to
and from the receptor and the other describes the effect of
the intrinsic binding kinetics when the ligand is in contact.
However, whereas the intrinsic binding term agrees with
that of Bialek and Setayeshgar, the diffusive term does
not: it contains an additional factor 1=ð2ð1� nÞÞ. We
believe that this is because, by invoking the fluctuation-
dissipation theorem, Bialek and Setayeshgar (9) linearize
the reaction-diffusion problem, thereby ignoring correla-
tions between the state of the receptor and the ligand con-
centration. The expression of Berg and Purcell (Eq. 3)
does not feature a term that arises from the intrinsic binding.
However, their term agrees with our diffusive term, which is
considered to be the fundamental limit. Because both terms
in our expression contain the factor 1=ð2ð1� nÞÞ, our prin-
cipal result Eq. 18 can be rewritten as Eq. 20, which shows
that the expression of Berg and Purcell (Eq. 3) can be gener-
alized to reactions that are not diffusion-limited by simply
replacing kD with kon. Our simple coarse-grained model elu-
cidates why this is possible: koncð1� nÞ ¼ t�1

w is the rate at
which molecules independently bind the receptor from the
bulk; via detailed balance, this expression not only captures
the unsuccessful arrivals of molecules from the bulk, but
also the receptor rebindings, which do not provide informa-
tion about the concentration.

The purpose of sensing is to enable the detection of
changes in the ligand concentration. If the concentration
varies over only a small range around the dissociation
constant KD, then n varies in a small interval around
n ¼ 0:5, for which the expressions of Berg and Purcell (3)
and Bialek and Setayeshgar (9) become equal. However,
for most signaling systems it is not known how the ligand
concentration varies under physiologically relevant condi-
tions. Yet, information theory tells us that information trans-
mission is maximized when the input distribution spans the
full dynamic range of the signaling system, rather than a
narrow range around KD (28,29). Or, vice versa, in the
case where the input distribution is fixed by the environ-
ment, the response curve that maximizes information trans-
mission is one whose dynamic range matches the input
distribution. This suggests that n can be well above and
below n ¼ 0:5—meaning that the difference between the
respective expressions can become significant.

A comparison of the power spectrum of the receptor
occupancy as predicted by our theory against results from
particle-based simulations shows that our theory is very
accurate under biologically relevant conditions. As Fig. S6
shows, the theory accurately predicts the zero-frequency
limit of the power spectrum for concentrations up to at least
Biophysical Journal 106(4) 976–985
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36 mM. Given the complicated algebraic diffusion dynamics
of rebinding trajectories, it is perhaps surprising that the
error in the concentration estimate is so accurately predicted
by a simple expression like Eq. 18 or 20. The success of this
expression lies in the fact that biologically relevant concen-
trations are low, which means that the time a ligand mole-
cule spends near the receptor is very short both on the
timescale at which molecules arrive from the bulk and on
the timescale a ligand molecule is bound to the receptor.
This is the reason why both the rapid rebindings and the
unsuccessful bulk arrivals can be integrated out, and the
complicated many-body reaction-diffusion problem can be
reduced to a pair problem in which ligand molecules interact
with the receptor with renormalized association and dissoci-
ation rates (see Eq. 19).

Whether this simple approach can also be used when the
ligand can bind to multiple receptors that are in close
physical proximity remains an open question (3,9,22).
Ligand rebinding between neighboring receptors may lead
to nontrivial spatio-temporal correlations between the re-
ceptor states. Berezhkovskii and Szabo (12) have recently
derived an expression for the accuracy of sensing via multi-
ple receptors on a sphere, ignoring these spatio-temporal
correlations. In the limit that the number of receptors goes
to infinity, their expression for the accuracy of sensing in
the diffusion-limited regime reduces to

dc=c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDRcT

p
:

Paradoxically, by replacing the cross section of the receptor
s with twice the radius of the cell R, this is the result of

Bialek and Setayeshgar (9) for a single receptor, Eq. 4:
the expression for dc/c does not contain the factor 1� n.
The absence of this factor can be understood intuitively
by noting that in the limit that the number of receptors
goes to infinity, there will always be receptors available
for binding the ligand. The fact that in this limit the result
of Bialek and Setayeshgar (9) for a single receptor is recov-
ered supports the idea that their analysis is essentially a
mean-field analysis that ignores receptor-ligand correla-
tions. For a finite number of receptors (including the sce-
nario that there is only one receptor), the occupancy of the
receptor will, however, affect the precision of sensing, and
these correlations are important. Clearly, it will be of inter-
est to test the accuracy of sensing via multiple receptors, and
quantify the importance of spatio-temporal correlations, via
simulations. We leave this for future work.

Finally, our observations have implications for the
modeling of biochemical networks. They underscore our
earlier observation (17) that when the cell does not exhibit
concentration gradients on cellular length scales, the effect
of diffusion can often be captured in a well-stirred model,
which can then be simulated using the Gillespie algorithm
(30) instead of a much more computationally demanding
particle-based algorithm (15). In such a well-stirred model,
Biophysical Journal 106(4) 976–985
the rapid rebindings are integrated out and association and
dissociation occur in a memoryless fashion, with expo-
nentially distributed waiting times with mean (konc)

�1 and
koff

�1, respectively. This is a simplification—at short times,
the association-time distribution is algebraic due to the
rebindings—but it is an accurate one. It not only preserves
the equilibria of the association-dissociation reactions, but
also the important noise characteristics of the network.
Indeed, the high-frequency noise from the rapid rebindings
is typically filtered by the network downstream and only
the low-frequency noise, obeying exponential statistics, is
significantly propagated downstream (17). On the other
hand, when rebindings can qualitatively change the macro-
scopic behavior of the system, as in systems employing
multisite protein modification, rebindings cannot simply
be integrated out to yield the well-known macroscopic
effective rate constants kon and koff (15,31). Yet, Gopich
and Szabo (32) have recently shown that, because rebind-
ings remain fast, it is nonetheless possible to arrive at an
alternative simplified description for these systems that cap-
tures the effect of rebindings.
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RELATIONS BETWEEN THE VARIANCE OF A
TIME-ESTIMATE, THE CORRELATION

FUNCTION AND THE POWER SPECTRUM

In this section we briefly describe how the variance of
a time estimate of a specific quantity is related to the
correlation function. We describe the state of a receptor
with the variable n, where n = 0, 1 depending on whether
the receptor is free or bound, respectively. The estimate
nT of the receptor occupancy n, obtained by integrating
n(t) over an integration time T , is

nT =
1

T

∫ T

0

n(t)dt. (S1)

The variance in nT , σ2
nT , is given by

σ2
nT =

〈
n2
T

〉
− 〈nT 〉2 (S2)

=
1

T 2

∫ T

0

∫ T

0

dtdt′ 〈n (t)n (t′)〉 − 〈nT 〉2 (S3)

=
1

T 2

∫ T

0

∫ T−t

−t
dtdτ 〈n (0)n (τ)〉 − 〈n〉2 , (S4)

where in Eq. S4 we have defined τ = t′ − t and assumed
the process to be stationary. The angular brackets denote
an ensemble average over a large number of independent
measurements. The correlation function for the observ-
able n (t) is defined as

Cn (τ) ≡ 〈n (0)n (τ)〉 − 〈n〉2 . (S5)

Substitution of Eq. S5 into Eq. S4 yields

σ2
nT =

1

T 2

∫ T

0

dt

∫ T−t

−t
dτC (τ) , (S6)

which in the limit of large T becomes

σ2
nT =

T�τn

1

T

∫ ∞
−∞

dτCn (τ)

=
2σ2

nτn
T

. (S7)

Here we have used the fact that limτ�τn Cn (τ) = 0 and
introduced the correlation time τn:

τn ≡
1

σ2
n

∫ ∞
0

Cn (τ) dτ. (S8)

The correlation function and the power spectrum
Pn (ω) are related through the Fourier Transform

Cn (τ) =
1√
2π

∫ ∞
−∞

dωPn (ω) eiωτ , (S9)

Pn (ω) =
1√
2π

∫ ∞
−∞

dτCn (τ) e−iωτ , (S10)

such that

Cn (0) =
1√
2π

∫ ∞
−∞

dωPn (ω) = σ2
n, (S11)

Pn (0) =
1√
2π

∫ ∞
−∞

dτCn (τ) = 2σ2
nτn = Tσ2

nT . (S12)

Because the correlation function is real and even in time,
we have

Pn (ω) = Ĉn (s = iω) + Ĉn (s = −iω), (S13)

where Ĉn(s) =
∫∞

0
Cn(t)e−st is the Laplce transform of

the correlation function. The correlation time is there-
fore related to the Laplace transform of the correlation
function by

2σ2
nτn = Pn (0) (S14)

= 2Re
[
Ĉ (s = iω)

]
ω=0

. (S15)

TIME-DEPENDENT RATE CONSTANTS

Following Agmon and Szabo [1], we consider a single
static receptor at the origin and a single ligand molecule
that moves with diffusion constant D. The probabil-
ity that the ligand molecule is at distance r at time t
given that it was initially at a distance r0 is given by the
Green’s function p(r, t|r0). The evolution of the Green’s
function is given by the diffusion equation

∂p(r, t|r0)

∂t
=

1

r2

∂

∂r
Dr2e−βU(r) ∂

∂r
eβU(r)p(r, t|r0),

(S16)

where β is the inverse temperature and U(r) is the in-
teraction potential. The reaction between receptor and
ligand is modeled as a boundary condition to the solu-
tion of this equation. If receptor and ligand can associate
with the intrinsic association rate ka when they are at the
contact distance r = σ, then the boundary condition is

4πσ2D
∂p(r, t|r0)

∂r

∣∣∣∣
r=σ

= kap(σ, t|r0). (S17)
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If ka is finite, then the boundary condition is called a radi-
ation boundary condition, while if ka →∞, the boundary
condition is an absorbing coundition. The latter must be
used to obtain the rate constant of diffision-limited reac-
tions, where receptor and ligand associate upon the first
collision.

The survival probability Sα(t|r0) is the probability
that a particle, which starts at a position r0, has not
yet reacted at a later time t. It is given by

Sα(t|r0) = 4π

∫ ∞
σ

drr2p(r, t|r0). (S18)

The subscript α is either “rad” or “abs”, corresponding
to ka being finite or infinite, respectively.

The propensity function Rα(t|r0) is the probabiltiy
that a ligand particle, which starts at r = r0, reacts for
the first time at a later time t:

Rα(t|r0) = −∂Sα(t|r0)

∂t
. (S19)

The time-dependent rate constant kα(t) is

kα(t) = 4π

∫ ∞
σ

dr0r
2
0Rα(t|r0)peq(r0). (S20)

The distribution peq(r0) is the equilibrium radial distri-
bution function, peq(r) = e−βU(r). If ligand and receptor
only interact at contact as assumed in this study, then
U(r) = 0 for r ≥ σ and peq = 1, meaning that the equi-
librium distribution corresponds to a spatially uniform
distribution. The time-dependent rate constant kα(t) di-
vided by the volume V is the probability per unit amount
of time that receptor and ligand associate for the first
time at a later time t, averaged over all initial positions
r0 drawn from the equilibrium distribution peq(r0).

For N non-interacting ligand molecules in a volume
V at concentration c = N/V , which initially have an
equilibrium distribution, the probability that no ligand
molecules have reacted at a later time t is Sα(t|eq). In
the limit that V →∞ and N →∞, the probability that
a ligand molecule reacts for the first time at a later time
t is

−∂Sα(t|eq)

∂t
= krad(t)cSα(t|eq). (S21)

This can be integrated to yield

Sα(t|eq) = e−c
∫ t
0
dt′kα(t′). (S22)

The expressions Eq. S18 - Eq. S22 hold for both radi-
ating and absorbing boundary conditions, corresponding
to ka being finite and infinite, respectively. When ka is
finite, Rrad(t|r0) is also given by

Rrad(t|r0) = kap(σ, t|r0) (S23)

and the time-dependent rate constant krad(t) is then also
given by

krad(t) = 4πka

∫ ∞
σ

dr0r
2
0p(σ, t|r0)peq(r0) (S24)

To relate krad(t) to kabs(t) in what follows below it will
be useful to exploit the detailed-balance condition

peq(r0)p(r, t|r0) = peq(r)p(r0, t|r). (S25)

We can integrate this equation over r0 to find

4π

∫
dr0r

2
0p(r, t|r0)peq(r0) = peq(r)Sα(t|r). (S26)

Combining this equation with Eq. S24 we find that

krad(t) = peq(σ)kaSrad(t|σ), (S27)

which for V (r) = 0, as assumed here, reduces to

krad(t) = kaSrad(t|σ). (S28)

The time-dependent rate constant krad(t) can be re-
lated to the time-dependent rate constant kabs(t) via

krad(t) =

∫ t

0

dt′Rrad(t− t′|σ)kabs(t
′). (S29)

This can be understood by noting that kabs(t
′)/V is the

probability per unit amount of time that receptor and
ligand come in contact for the first time at time t′, while
Rrad(t− t′)|σ) is the probability that receptor and ligand
which start at contact r = σ at time t′ associate a time
t− t′ later. In Laplace space, the above expression reads

k̂rad(s) = R̂rad(s|σ)k̂abs(s). (S30)

Since Rrad(t|σ) = −∂Srad(t|σ)/∂t, R̂rad(s|σ) is also given
by

R̂rad(s|σ) = 1− sŜrad(s|σ). (S31)

The Laplace transform of Eq. S28 yields k̂rad(s) =
kaŜrad(s|σ). Combining this with Eq. S30 and Eq. S31
yields

k̂rad(s) =
kak̂abs(s)

ka + sk̂abs(s)
. (S32)

DERIVATION OF EQ. 13 OF MAIN TEXT

In this section we derive the correlation function and
the correlation time for a receptor which switches be-
tween a ligand-bound state n = 1 and a ligand-unbound
state n = 0. The correlation function for the receptor
state n is

Cn (τ) = p0
∗
(
p∗|∗ (τ)− p0

∗
)
, (S33)
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where p0
∗ = 〈n〉 = n is the equilibrium probability that

the receptor is bound (∗) and p∗|∗ (τ) is the probability
that the receptor is bound at time t = τ , given that it
was bound initially. For every two-state process we can
write

p∗|∗ (τ) = 1− p0|∗ (τ) (S34)

= 1−Srev (τ |∗) , (S35)

where Srev (τ |∗) is the probability that the receptor is
free at time τ given that it was bound initially; note that
in between the receptor may have switched between the
bound and unbound state many times. In Laplace space

p̂∗|∗ (s) = s−1 − Ŝrev (s|∗) , (S36)

such that we have

Ĉn (s) = p0
∗

(
s−1 − Ŝrev (s|∗)− p0

∗
s

)
. (S37)

The initial value theorem states that the s→∞ limit of
sĈn(s) in the Laplace domain is equal to the t→ 0 limit
of C (t) in the time domain, thus

lim
s→∞

sĈn (s) = lim
t→0

Cn (t) = σ2
n. (S38)

For a binary process the variance is

σ2
n = p0

∗
(
1− p0

∗
)

= n (1− n) . (S39)

The Laplace transform of Eq. 8 of the main text yields

L
[
Srev (t|∗) = kd

∫ t

0

[1−Srev (t′|∗)] Srad (t− t′|σ) dt′
]

(S40)

=⇒ sŜrev (s|∗) =
kdŜrad (s|σ)

1 + kdŜrad (s|σ)
. (S41)

We assume the ligand particles are non-interacting and,
following Agmon and Szabo [1], we approximate the sur-
vival probability as

Srad (t|σ) = Srad (t|eq)Srad (t|σ) . (S42)

This is Eq. 9 of the main text. Here Srad (t|σ) is the sur-
vival probability for the geminate receptor-ligand pair at
contact; it is the probability that a receptor which ini-
tially is surrounded by only one ligand molecule at con-
tact, is still free at a later time t. The quantity Srad (t|eq)
is the survival probability for the receptor in a sea of equi-
librated ligand molecules. In the main text we elaborate
on the assumptions underlying this approximation.

We now relate the survival probability Srad (t|eq) for
a receptor surrounded by an equilibrium distribution of
ligand molecules to the survival probability Srad (t|σ) for
a receptor with only ligand molecule at contact. To this
end, we exploit that both survival probabilities can be

related to the time-dependent rate constant krad(t). As
shown in the previous section (Eq. S28), detailed balance
yields [1]

krad (t) = kaSrad (t|σ) . (S43)

On the other hand, we know that Srad (t|eq) is given by
(see Eq. S22 in previous section)

Srad (t|eq) = e−c
∫ t
0
krad(t′)dt′ . (S44)

Combining these two equations yields the following ex-
pression for the time derivative of Srad (t|eq):

dSrad (t|eq)

dt
= −ckrad (t) Srad (t|eq) (S45)

= −ckaSrad (t|σ) Srad (t|eq) (S46)

= −ckaSrad (t|σ) . (S47)

The Laplace transform of Eq. S47 is

sŜrad (s|eq)− 1 = −ckaŜrad (s|σ) . (S48)

Combining this equation with Eq. S41 gives

1− sŜrev (s|∗) =
cKeq

1 + cKeq − sŜrad (s|eq)
, (S49)

where Keq = ka/kd is the equilibrium constant. Substi-
tuting this result in Eq. S37, we find

Ĉn (s) =
n

s

(
1− sŜrev (s|∗)− n

)
=
n

s

(
cKeq(1− n) + nŜrad (s|eq)− n

1 + cKeq − sŜrad (s|eq)

)

= σ2
n

nŜrad (s|eq)

1− (1− n) sŜrad (s|eq)
, (S50)

where in deriving the last line we have used that cKeq =
n/(1 − n) and σ2

n = n(1 − n). Noting that n = kacτc
and 1 − n = kdτc, with τc = (kac + kd)

−1 the intrinsic
correlation time, Eq. 11 of the main text is obtained.

To continue, an expression for Ŝrad (s|eq) is required.
A general expression for the Laplace transform of Eq. S44
is not available. We can, however, expand Srad (t|eq),

Srad (t|eq) = e−c
∫ t
0
krad(t′)dt′ (S51)

≈ 1− c
∫ t

0

krad (t′) dt′ + . . . , (S52)

and now take the Laplace transform [1]:

Ŝrad (s|eq) = s−1 − s−1ck̂rad (s) + . . . (S53)

≈ s−1
(

1 + ck̂rad (s)
)−1

. (S54)

For small times and low concentrations, the above ap-
proximation is accurate because the higher order terms in
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the expansions of Eq. S52 and Eq. S53 can be neglected.
For long times, krad(t) becomes constant, krad(t→∞) =
kon, and the Laplace transform of Srad (t|eq) is exactly

given by Eq. S54, with k̂rad (s) = kon/s.

The Laplace transform k̂rad(s) of the time-dependent
rate constant krad(t) can be related to the Laplace trans-

form k̂abs(s) of the time-dependent rate constant kabst(t)
of a diffusion-limited reaction via (see previous section)
[1]

k̂rad(s) =
kakabs(s)

ka + skabs(s)
. (S55)

The time-dependent rate constant kabs(t) of a diffusion-
limited reaction is [2]

kabs(t) = 4πσD
(

1 + σ/
√
πDt

)
, (S56)

which in the Laplace domain becomes

sk̂abs(s) = kD

(
1 + σ

√
s/D

)
, (S57)

= kD (1 + τ(s)) , (S58)

where τ (s) ≡ σ
√
s/D =

√
sτm with the molecular time

scale τm = σ2/D and kD ≡ kabs(t → ∞) = 4πσD is
the diffusion-limited reaction rate. Substituting this in
Eq. S55 gives

k̂rad(s) =
kakD
s

1 + τ (s)

ka + kD (1 + τ (s))
, (S59)

which can be plugged into Eq. S54 to yield

Ŝrad (s|eq) ≈
ka + kD (1 + τ (s))

s (ka + kD (1 + τ (s))) + ckakD (1 + τ (s))
. (S60)

We now insert the above expression into Eq. S50, which
gives

Ĉn (s) = σ2
n

n (ka + kD(1 + τ(s)))

ckakD(1 + τ(s)) + ns (ka + kD(1 + τ(s)))

= σ2
n

τc (ka + kD(1 + τ(s)))

kD(1 + τ(s)) + τcs (ka + kD(1 + τ(s)))
,

(S61)

where we have used that n = kacτc, with τc = (kac +
kd)
−1 the intrinsic correlation time of the receptor. We

define

Σ(s) ≡ ka
kD(1 + τ(s))

(S62)

and the receptor correlation time τ ′c(s) renormalized by
concentration fluctuations:

τ ′c(s) ≡ τc (1 + Σ(s)) , (S63)

=
ka + kD(1 + τ(s))

kD(1 + τ(s))
. (S64)

We now substitute the above expression in Eq. S61 to
arrive at Eq. 13 of the main text:

Ĉn (s) = σ2
n

τ ′c(s)

sτ ′c(s) + 1
. (S65)

To obtain the correlation time, we take the limit s = 0

since Re
[
Ĉn (s = 0)

]
= σ2

nτn (see Eq. S14):

Ĉn (s = 0) =
Pn (ω = 0)

2
(S66)

= σ2
n

ka + kD
(kac+ kd) kD

. (S67)

Hence, the receptor correlation time, normalized by con-
centration fluctuations, is

τn = τ ′c(s→ 0), (S68)

=
ka + kD

(kac+ kd) kD
. (S69)

VALIDITY OF ASSUMPTIONS UNDER
BIOLOGICALLY RELEVANT CONDITIONS

Our theory makes two assumptions: I After recep-
tor dissociation, the unbound receptor-ligand pair is sur-
rounded by a uniform distribution of ligand molecules;
this is described by Eq. 9 of the main text and Eq. S42
of the SI; II the Laplace transform of Srad (t|eq) is given
by Eq. 12 of the main text and Eq. S54 of the SI. Below,
we address the validity of these two assumptions. But
before doing so, we give a qualitative argument for why
both assumptions are satisfied.

Timescale separation

The validity of both assumptions is rooted in a
timescale separation: the time a molecule spends near
the receptor is very short compared to the timescale on
which molecules bind the receptor from the bulk, i.e.
starting from a uniform distribution. This is illustrated
in Fig. S1. It is seen that Srad (t|σ) (blue dashed line) de-
cays much more rapidly than Srad (t|eq) (red solid line).
Indeed, a ligand molecule near the receptor effectively ei-
ther instantly (re)binds the receptor or diffuses into the
bulk. Consequently, the probability of rebinding interfer-
ence is very small, meaning that assumption I is satisfied.

The second assumption II follows from the observation
that the range over which Srad (t|eq) = e−c

∫ t
0
dt′krad(t′)

deviates from its exponential decay at long times,
limt→∞Srad (t|eq) ≈ e−konct, is given by Srad (t|σ)—the
rate at which krad(t) reaches its limiting value kon is given
by Srad (t|σ), see Eq. S43. Because Srad (t|σ) decays much
faster than Srad (t|eq) (see Fig. S1), Srad (t|eq) can be
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FIG. S1. Illustration of timescale separation, which underlies
the validity of our theory and provides the motivation for the
simple-coarse-grained model. The survival probability of a
free receptor surrounded by only one ligand molecule which
initially is at contact, Srad (t|σ) (blue dashed line), decays
much more rapidly than the survival probability for a free re-
ceptor that is initially surrounded by an equilibrium, uniform

distribution of ligand molecules, Srad (t|eq) = e−c
∫ t
0 krad(t′)dt′

(solid red line). This shows that the time a molecule spends
near the receptor (given by the decay of Srad(t|σ)) is very
small compared to the average time on which molecules ar-
rive from the bulk (given by τoff =

∫∞
0
dt′Srad (t′|eq)). In-

deed, on this timescale, a ligand molecule near the receptor
effectively either instantly (re)binds the receptor or diffuses
into the bulk. This separation of timescales means that re-
binding interference occurs only rarely (see also Fig. S3) and
that assumption I of our theory, Eq. S42, is satisfied; it also
makes it possible to integrate out the rebindings. The fig-
ure also shows that Srad (t|eq) is well approximated by its
long-time behavior limt→∞Srad (t|eq) ≈ e−konct (dotted grey
line). This means that bulk molecules arrive at the receptor
in a memoryless fashion at a constant rate konc and that as-
sumption II is satisfied. Parameters: σ = 10 nm, c = 0.4µM,
D = 1µm2s−1, ka = 75µM−1s−1, kD = 75µM−1s−1.

well approximated by its long-time limit Srad (t|eq) ≈
e−konct. This means that also assumption II is satisfied.

We now address both assumptions quantitatively.

Assumption I: the equilibrium assumption

As discussed in the main text, the equilibrium assump-
tion, Eq. 9 of the main text (Eq. S42), holds when there
is no rebinding interference. To address the probability of
rebinding interference, we first study the propensity for
receptor binding given that a ligand molecule has just
dissociated and now is at contact with the receptor; the
other molecules have the equilibrium, uniform distribu-
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D=10Dv
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FIG. S2. The ratio of the change in Srad due to a bulk binding
and a rebinding of a dissociated ligand particle; this is the
ratio of the two terms on the right-hand-side of Eq. S70. The
bulk dominates the propensity function already at very small
t. Parameters: σ = 10 nm, c = 0.4µM, Dv = 1µm2 s−1,
ka = 75µM−1 s−1.

tion. From Eq. 9 of the main text (Eq. S42) we have

dSrad (t|σ)

dt
=

bulk−binding︷ ︸︸ ︷
Srad (t|σ)

dSrad (t|eq)

dt
+

rebinding︷ ︸︸ ︷
Srad (t|eq)

dSrad (t|σ)

dt
. (S70)

This is the propensity function for receptor binding, i.e.
the probability that a receptor with a ligand molecule
at contact and surrounded by a uniform distribution of
ligand molecules, binds a ligand molecule for the first
time at a later time t. The first term is the probability
that this ligand molecule is a molecule from the bulk,
while the second gives the probability that this is the
ligand molecule that was in contact. Fig. S2 shows the
ratio of these two terms. It is seen that only at very
short times, rebindings dominate the bulk bindings. For
long times, receptor binding is completely dominated by
the binding of molecules from the bulk, which in our
theory, as well as in the simulations, bind the receptor in
a memoryless fashion (see below for further details).

Eq. S70 allows us to derive an expression for the prob-
ability pint that an interference occurs. Here, interference
is defined as an event in which the binding of a molecule
from the bulk pre-empts, and thereby prevents, the re-
ceptor rebinding of a molecule that has just dissociated
from the receptor. If the unbound receptor-ligand pair
at contact is surrounded by an equilibrium distribution
of ligand molecules, then the probability that a ligand
molecule from the bulk does not interfere with the recep-
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FIG. S3. Probability pint (red dash-dotted line) that a lig-
and molecule from the bulk interferes with the receptor re-
binding of a dissociated ligand molecule as a function of the
concentration c (a) and diffusion constant D (b). The prob-
ability 1 − pint of no interference (black line) consists of two
terms (see Eq. S71): the probability p∗reb that the dissoci-
ated ligand molecule rebinds the receptor before a molecule
from the bulk does (dashed black line) and the probability
pesc = Srad(∞|σ) = kD/(ka + kD) = 1 − preb that it escapes
into the bulk (dashed gray line; second term). It is seen that
for concentrations c . µM bulk molecules hardly interfere
with the receptor rebinding of dissociated ligand molecules.
This is the motivation for the simplified model of Fig. 3 of
the main text. In the simplified coarse-grained model, the
probability of rebinding is approximated as preb = 1− pesc ≈
Srad(t → ∞|σ) = ka/(ka + kD) (solid blue line); this corre-
sponds to assuming that in the expression for preb, the first
term on the right-hand side of Eq. S71, Srad (t|eq) ≈ 1. See
also Fig. S1. Parameters: ka = 75µM−1s−1, σ = 10 nm;
in panel a) D = 1µm2s−1 and kD = 75µM−1s−1; because
ka = kD, preb = pesc = 0.5; in panel b) c = 0.4µM.

tor rebinding of the ligand molecule at contact, is

1− pint = −
∫ ∞

0

dSrad (t|σ)

dt
Srad (t|eq) dt+ Srad (∞|σ) .

(S71)

Here the first term on the right-hand-side is the integral
of the second term on the right-hand-side of Eq. S70 — it
is the probability that the ligand molecule which has just
dissociated from the receptor rebinds the receptor before
a ligand molecule from the bulk does; the second term
Srad(∞|σ) is the probability that the ligand molecule at
contact (with no other ligand molecules present) escapes
into the bulk — when the ligand at contact escapes into
the bulk, then, by definition, it does not rebind and re-
bindig interference therefore does not arise. Combining
the above expression with Eq. S70 shows that the prob-
ability of rebinding interference is

pint = −
∫ ∞

0

dt [Srad (t|σ)− Srad (∞|σ)]
dSrad (t|eq)

dt
,

(S72)

where [Srad (t|σ)− Srad (∞|σ)] dSrad (t|eq) /dt is the
probability that a molecule from the bulk binds the re-
ceptor before the ligand molecule which started at con-
tact and that would have rebound the receptor if there
were no other ligand molecules, does. Fig. S3 shows
that for biologically relevant concentrations and diffusion
constants, the probability of rebinding interference, pint,
is very small, which means that the central assumption
holds.

Assumption II: Survival probablity of a receptor
surrounded by an equilibrium distribution of

particles

The second assumption is that the Laplace transform
of Srad (t|eq) is given by Eq. 12 of the main text and
Eq. S54 of the SI. As mentioned above, this expression
captures both the short- and long-time limit of the sur-
vival probabiliy. Fig. S1 illustrates, however, that biolog-
ically relevant concentrations are so low that, to a very
good approximation, the survival probability is given
by its long-time limit: Srad (t|eq) = e−c

∫ t
0
krad(t′)dt′ ≈

e−konct. This means that the molecules other than the
one which has dissociated last bind, to an excellent ap-
proximation, the receptor in a memoryless fashion with
a constant rate konc.

We can quantify this approximation further by investi-
gating the mean unbound time τoff =

∫∞
0

Srad (t|eq) dt =

Ŝrad (s = 0|eq); this is the mean waiting time for bind-
ing. Eq. S50 shows that the central approximation of
our theory, Eq. S42 (Eq. 9 of the main text), predicts
that the zero-frequency limit of the power spectrum and
hence the correlation time τn and the precision of the
concentration estimate, are determined by n and τoff :

Ĉn(s = 0) = σ2
nnτoff . (S73)

Indeed, because Ĉn(s = 0) = σ2
nτn (see Eq. S15),

τn = nτoff . The exact mean unbound time for a free
receptor surrounded by ligand molecules obeying the
equilibrium distribution is τoff =

∫∞
0

Srad (t|eq) dt =∫∞
0
e−c

∫ t
0
krad(t′)dt′dt. In contrast, the approximation of

Eq. S54 predicts an average unbound time of 1/(konc).
Note that while this is the mean waiting time for Marko-
vian binding with rate konc, the approximation of Eq. S54
does not assume that binding is Markovian for all times—
only in the long-time limit does binding occur with a con-
stant rate. Fig. S4 shows the relative error in the mean
unbound time as a function of the concentration. It is
seen that for biologically relevant concentrations c . µM
the relative error is indeed small, less than 10%.

COMMENTS ON COMPARISON BETWEEN
THEORY AND SIMULATIONS

Our theory accurately predicts the power spectrum
over the full frequency range, even though our simula-
tion box is finite and the theory is for an unbounded
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FIG. S4. The relative error in the average off-time, i.e. the
average waiting time for a new molecule to associate, assum-
ing that the receptor is initially surrounded by a uniform
distribution of ligand molecules. The exact unbound time

τoff ≡
∫∞

0
Srad (t|eq) dt =

∫∞
0
e−c

∫ t
0 krad(t′)dt′dt while Eq. S54

assumes that it is 1/(konc). Eq. S54 does not assume that
binding is Markovian for all times; yet its average waiting
time is equal to that of a Markovian binding process. The
simple, coarse-grained model assumes binding is Markovian
for all times. Note that for c . µM the theory and hence
the coarse-grained model gives a reasonable prediction for
the off time. Parameters: D = 1µm2s−1, ka = 55µM−1s−1,
σ = 10 nm, kD = 75µM−1s−1.
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FIG. S5. The correlation function of our theory (black
solid line) compared with that of a random telegraph pro-
cess (red dotted curve). At long times, our theory exhibits
a small algebraic tail, which is the remnant of Srad(t|σ) in
Eq. S42. D = 1µm2s−1, ka = 75µM−1s−1, σ = 10 nm,
kD = 75µM−1s−1, c = 0.4µM.
domain. It is well known that in an unbounded system,
the correlation function exhibits an algebraic tail [3, 4].
This is because the relaxation of a fluctuation of the re-
ceptor state involves not only the binding and unbinding
of ligand, but also the diffusive transport of ligand to
and from the receptor. While the binding and unbinding
of ligand continually perturbs the ligand concentration
profile, diffusion counteracts these perturbations, lead-
ing to the relaxation of the concentration profile back
to its equilibrium shape. In an unbounded system, the
relaxation of the concentration profile involves diffusion-
mediated transport of ligand on infinitely long length
and time scales, thereby dominating the relaxation of
the receptor state at long times. This is the origin of
the algebraic tail of the receptor correlation function for
diffusion-influenced reactions in an unbounded system.

In contrast, the simulation box of our system is finite
and the collisions of the ligand molecules with the cell
boundaries randomize their trajectories on time scales
longer than L2/D. Consequently, in the simulations the
bulk molecules thus bind the receptor in a Markovian
fashion at a constant rate at long times, leading to expo-
nential relaxation of fluctuations of the receptor state at
long times.

The correlation function of our theory does exhibit a
small algebraic tail (Fig. S5), which is the remnant of
the factor Srad(t|σ) in Eq. S42—the probability that a
free receptor with a single molecule at contact is still free
at a later time t in an unbounded system. However, in
Eq. S42 we assume that the other ligand molecules, form-
ing the “bulk” with survival probability Srad (t|eq), do
have a uniform distribution. At long times t� τm these
molecules will associate with the receptor in a memory-
less fashion with a constant rate konc, as described above
(Fig. S1). Moreover, in this limit they dominate receptor
binding (Fig. S2), as a result of which the algebraic tail
of our theory is very small—smaller than observed for
diffusion-influenced reactions in an unbounded domain
[3, 4]. Both in our theory and our simulations, at long
times the receptor dynamics is thus to a good approxi-
mation a random telegraph process with an on rate konc
and an off rate koff .

TEST FOR HIGHER CONCENTRATIONS

Fig. S6 shows the zero-frequency limit of the power
spectrum Pn(ω → 0) for two higher concentrations,
c = 4µM and c = 36µM, respectively. While for higher
concentrations, it becomes increasingly difficult to ob-
tain good statistics, our results suggest that for concen-
trations up to at least c = 36µM, our theory accurately
predicts the precision by which chemical concentrations
can be measured.
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Eq. 13 Bialek-Setayeshgar eGFRD

0.100

5.10−5

1.10−4

2.10−4

0 0.25 0.5 0.75 1li
m

ω
→

0
P
n
(ω

)
[s
]

n̄

FIG. S6. The zero-frequency limit of the power spectrum as
a function of the receptor occupancy n for a concentration
and box size of c = 4µM and L = 0.25µm (panel a) and
c = 36µM and L = 0.80µm (panel b), respectively. The
red dots show the simulation results, while the red line shows
the prediction of our theory. It is seen that the agreement
is good, even for the highest concentration. In contrast, the
result of Bialek and Setaygeshar deviates markedly from our
results. Parameters: ka = 552µM−1s−1; σ = 10nm and D =
1µm2s−1, such that kD = 75µM−1s−1. The occupancy n is
varied by changing kd.
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