Supporting Information

Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells

Shinuk Cho^{1,*}, Kwang-Dae Kim², Jinhee Heo³, Joo Yul Lee³, Gihoon Cha³, Bo Yeol Seo³, Young Dok Kim^{2,*}, Yong Soo Kim¹, Si-young Choi³, Dong Chan Lim^{3,*}

¹Department of Physics and Energy Harvest Storage Research Center (EHSRC), University of Ulsan, Ulsan 680-749, Republic of Korea.

²Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ³Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon 641-010, Republic of Korea.

*Corresponding Authors: <u>sucho@ulsan.ac.kr</u> (S. Cho), <u>ydkim91@skku.edu</u> (Y. D. Kim), and <u>dclim@kims.re.kr</u> (D. C. Lim)

1. Absorption Spectra

Figure S1. Absorption spectra of solar cell components.

We used absorption measurements to verify if the $PC_{61}BM$ layer remains after deposition of the photoactive layer. Note that we used pure PTB7-F20 (without $PC_{71}BM$) in this experiment. In the absorption spectrum of the ZnO ripple, there is weak shoulder peak near 350 nm, while PTB7-F20 has no absorption peak at 350 nm. The absorption spectrum measured after spin-coating of PTB7-F20 shows a strong 350 nm peak originating from $PC_{61}BM$. We concluded from this observation that the underlying $PC_{61}BM$ layer would remain without problems during the spin-coating of the upper layers. Note that a mixture ratio of greater than 1:2 is necessary to achieve similar absorption features from a mixture of PTB7-F20 and $PC_{61}BM$.

2. AFM phase image

Figure S2. AFM phase images of ZnO ripples (a) without and (b) with $PC_{61}BM$.

3. Full energy band diagram.

Figure S3. Energy band diagram of the inverted BHJ solar cells fabricated using PTB7-F20 and $PC_{71}BM$.

4. Dark current J-V characteristics.

Figure S4. J-V characteristic curves measured with and without illumination (labeled "Light" and "Dark," respectively).

5. Solar cells with non-rippled ZnO layer.

Figure S5. *J-V* characteristics of inverted PTB7-F20:PC₇₁BM solar cells with and without PC₆₁BM on non-rippled ZnO layer.

6. Photo-assisted capacitance-voltage spectroscopy.

Figure S6. Schematic diagrams of photo-assisted capacitance-voltage spectroscopy measurements mechanism.