SUPPORTING INFORMATION

Combinatorial Assembly of Small Molecules into Bivalent Antagonists of TrkC or TrkA Receptors

Fouad Brahimi^{a,1}, Eunhwa Ko^{b,1}, Andrey Malakhov^b, Kevin Burgess^b, and H. Uri Saragovi^{a,c,d,*}

^a Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2

^b Department of Chemistry, Texas A&M University. Texas, USA 77842.

^c Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada H3T 1E2.

^d Department of Oncology and the Cancer Center, McGill University, Montreal, Quebec, Canada H3T 1E2.

¹ equal first authors

^{*} corresponding author. H.U. Saragovi (uri.saragovi@mcgill.ca)

TABLE OF CONTENTS

Α.	Table S1. β-Turn Sequence in Neurotrophins ¹	2
В.	General Methods for Syntheses	2
C.	General Procedure and Preparation of Monovalent Mimics	3
D.	General Procedure and Preparation of Bivalent Mimics	41
Е.	Table S2. Characterization of Compounds with TEG-alkyne Label	42
F.	Table S3. Characterization of Compounds with Biotin	46
G.	References	46

A. Table S1. β -Turn Sequence in Neurotrophins¹

protein	source		β-turn sequence	
		30-33	44-47	93-96
NGF	murine	DIKG	INNS	D <mark>EK</mark> Q
	human	D <mark>IK</mark> G	INNS	D <mark>GK</mark> Q
	bovine	D <mark>IK</mark> G	INNS	DNKQ
	guinea pig	D <mark>IK</mark> G	VNNN	D <mark>GK</mark> Q
	_	30-33	44-47	93-96
BDNF	pig	D <mark>MS</mark> G	V <mark>SK</mark> G	D <mark>SK</mark> K
	human	D <mark>MS</mark> G	V <mark>SK</mark> G	D <mark>SK</mark> K
	-	29-32	42-45	92-95
NT-3	mouse	DIRG	K <mark>TG</mark> N	ENNK
	human	DIRG	K <mark>TG</mark> N	ENNK

The side-chains of monovalent mimics were *i*+1 and *i*+2 residues in the β -turn sequences of neurotrophins from different sources. Red color residues were chosen for this research. NN and NK were excluded because of synthetic issue.

B. General Methods for Syntheses

All reactions were carried out under an atmosphere of dry nitrogen. Glassware was oven-dried prior to use. Unless otherwise indicted, common reagents or materials were obtained from commercial source and used without further purification. All α -amino acids used were of the L-configuration. Triethylamine (TEA) was obtained anhydrous by distillation over calcium hydride and tetrahydrofuran (THF) was distilled over sodium metal and benzophenone. Dichloromethane (CH₂Cl₂) was dried by a Mbraun solvent drying system.

Flash column chromatography was performed using silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV. ¹H and ¹³C NMR spectra were recorded on a Varian 500 (500 MHz ¹H; 125 MHz ¹³C) spectrometer at room temperature. Chemical shifts were reported in ppm relative to the residual CDCl₃ (δ 7.27 ppm ¹H; δ 77.0 ppm ¹³C), CD₃OD (δ 3.31 ppm ¹H; δ 49.86 ppm ¹³C), or *d*⁶-DMSO (δ 2.49 ppm ¹H; δ 39.5 ppm ¹³C). NMR chemical shifts were expressed in ppm relative to internal solvent peaks, and coupling constants were measured in Hz. (br = broad)

Analytical HPLC analyses were carried out on 150 x 4.6 mm C-18 column using gradient conditions (10 – 90% B, flow rate = 0.75 mL/min). Preparative HPLC was carried out on 100 x 21.2 mm C-18 column using gradient conditions (10 – 70% B, flow rate = 10.0 mL/min). The eluents used were: solvent A (H₂O with 0.1% TFA) and solvent B (CH₃CN with 0.1% TFA).

C. General Procedure and Preparation of Monovalent Mimics

A total of 14 monovalent mimics were prepared by the following procedure in different sequence order of β -turn regions, e.g. *i*+1 and *i*+2 (TG) and *i*+2 and *i*+1 (GT).

Scheme S1. Syntheses of Monovalent Mimics

General Procedure for Compound 5

To a solution of 11-bromoundecanoic acid (1.0 eq.) in CH_2CI_2 (1.0 M) was added oxalyl chloride (10.0 eq.). The mixture was stirred at 25 °C for 2 h, and then the solvent was removed. To remove the excess oxalyl chloride, the resulting residue was dissolved in CH_2CI_2 , and the solvent was removed under vacuum (x2). The resulting residue was dissolved in CH_2CI_2 (1.0 M), and then Boc-piperazine (1.0 eq.), and TEA (2.5 eq.) were added to the solution. The mixture was stirred at 25 °C for 4 h. After the solvent was removed under vacuum, the reaction mixture was diluted with H_2O and extracted with EtOAc (x3). The combined organic phases were washed with brine and then dried over MgSO₄. After completely removing the solvent, the compound **4** was purified by flash chromatography (1:3 EtOAc/Hexanes). To a solution of compound **4** (1.0 eq.) in DMF (0.09 M) was added K_2CO_3 (1.05 eq.), and then the mixture was stirred at 90 °C for 14 h. The reaction mixture was diluted with H_2O and extracted organic phases were dried over Na₂SO₄. After completely removing the solvent **4** (1.0 eq.) in DMF (0.09 M) was added the solvent, the compound **5** was purified by flash chromatography (2:5 EtOAc/Hexanes).

Scheme S2. Synthesis of Compound 5

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.83-7.80 (m, 4H), 3.53 (t, 2H, J = 7.0 Hz), 3.40-3.37 (m, 4H), 3.30-3.35 (m, 2H), 3.24 (br, 2H), 2.25 (t, 2H, J = 7.5 Hz), 1.58-1.51 (m, 2H), 1.46-1.42 (m, 2H), 1.39 (s, 9H), 1.24-1.20 (m, 12H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.4, 168.6, 154.5, 135.0, 132.3, 123.7, 79.8, 45.3, 41.4, 38.0, 33.0, 29.6, 29.5(2), 29.4, 29.2, 28.7, 28.5, 26.9, 25.4

General Procedure for Compound 6

Compound **5** (1.0 eq.) was dissolved in EtOH (0.16 M), and then hydrazine (4.0 eq.) was added to the solution. The mixture was refluxed at 90 °C for 4 h. After the reaction, the mixture was filtered, and then the solution was concentrated. Compound 6, thus obtained, was used for the next step without further purification.

Scheme S3. Synthesis of Compound 6

¹H NMR (500 MHz, DMSO- d_6) δ 3.40-3.38 (m, 4H), 3.30 (br, 2H), 3.24 (br, 2H), 2.48 (t, 2H, J = 5.5 Hz), 2.27 (t, 2H, J = 7.5 Hz), 1.45 (t, 2H, J = 6.0 Hz), 1.39 (s, 9H), 1.30 (t, 2H, J = 6.0 Hz), 1.22 (br, 12H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.5, 154.5, 79.8, 45.3, 42.3, 41.4, 34.0, 33.0, 29.8, 29.7(2), 29.6, 29.5, 28.7, 27.1, 25.4

General Procedure for Compounds 8

HOBt (1.1 eq.) and EDCI (1.1 eq.) were added to the solution of azide **7** (1.0 eq.) in CH_2CI_2 (0.2 M) at 0 °C. The mixture was stirred at 0 °C for 15 min, and then NMM (2.0 eq.) and compound **6** (1.0 eq.) were added into the mixture. The solution was warmed up to 25 °C, and the mixture was stirred for 16 h. The solvent was removed, and then the resulting residue was diluted with H_2O and extracted with EtOAc (x3). The combined organic layer was washed with 5% HCI (aq.), followed by 5% Na₂CO₃ (aq.), and brine, and then dried over Na₂SO₄. After completely removing the solvent, the compound **8** derivatives were purified by flash chromatography (EtOAc/Hexanes).

Compound 8_G

¹H NMR (500 MHz, CDCl₃) δ 6.44 (br, 1H), 3.93 (s, 2H), 3.56-3.53 (m, 2H), 3.43-3.34 (m, 6H), 3.25 (td, 2H, J = 12.0 Hz, J = 21.5 Hz), 2.29 (t, 2H, J = 12.5 Hz), 1.63-1.53 (m, 2H), 1.50-1.48 (m, 2H), 1.43 (s, 9H), 1.25 (br, 12H)

 ^{13}C NMR (125 MHz, CDCl_3) δ 172.1, 166.7, 154.8, 80.5, 52.9, 45.6, 41.5, 39.7, 33.6, 29.6(3), 29.4(2), 29.3,28.6, 27.0, 25.5

¹H NMR (500 MHz, CDCl₃) δ 6.56 (br, 1H), 4.08-4.01 (m, 1H), 3.97-3.91 (m, 1H), 3.60-3.56 (m, 2H), 3.43 (s, 4H), 3.41-3.37 (m, 2H), 3.33 (br, 1H), 3.28 (td, 2H, J = 9.5 Hz, J = 21.5 Hz), 2.31 (t, 2H, J = 14.5 Hz), 1.86 (br, 1H), 1.67-1.58 (m, 2H), 1.56-1.47 (m, 2H), 1.46 (s, 9H), 1.27 (br, 12H)

 ^{13}C NMR (125 MHz, CDCl₃) δ 172.3, 168.1, 154.8, 64.9, 63.6, 45.7, 41.6, 39.7, 33.6, 31.8, 29.6, 29.5(3), 29.4, 29.3, 28.6, 26.9, 25.4

Compound 8_K

¹H NMR (500 MHz, CDCl₃) δ 6.68 (t, 1H, J = 9.5 Hz), 4.90 (t, 1H, J = 7.5 Hz), 3.77-3.73 (m, 1H), 3.46-3.42 (m, 2H), 3.31 (s, 4H), 3.31-3.25 (m, 2H), 3.09 (td, 2H, J = 11.5 Hz, J = 22.5 Hz), 2.95 (td, 2H, J = 10.0 Hz, J = 21.0 Hz), 2.19 (t, 2H, J = 12.5 Hz), 1.83-1.61 (m, 2H), 1.50-1.44 (m, 2H), 1.41-1.35 (m, 4H), 1.33 (s, 9H), 1.29 (s, 9H), 1.14 (br, 14H)

¹³C NMR (125 MHz, CDCl₃) δ 171.9, 169.4, 156.2, 154.6, 80.3, 78.9, 64.0, 45.5, 43.7, 41.4, 40.3, 39.6, 33.42, 31.8, 29.8, 29.5(2), 29.4, 29.3(2), 28.5, 28.4, 26.9, 25.4, 22.8

¹H NMR (500 MHz, CDCl₃) δ 8.39 (t, 1H, J = 9.5 Hz), 6.43 (t, 1H, J = 9.5 Hz), 4.03 (t, 1H, J = 8.5 Hz), 3.61-3.3.57 (m, 2H), 3.44 (s, 4H), 3.41-3.35 (m, 2H), 3.30-3.19 (m, 2H), 2.33 (t, 2H, J = 12.5 Hz), 1.98-1.82 (m, 4H), 1.75-1.67 (m, 2H), 1.62-1.59(m, 2H), 1.50 (s, 18H), 1.47 (s, 9H), 1.28 (br, 12H)

 ^{13}C NMR (125 MHz, CDCl₃) δ N.A.

Compound 8_T

¹H NMR (500 MHz, DMSO- d_6) δ 8.13 (t, 1H, J = 5.5 Hz), 5.18 (d, 1H, J = 5.0 Hz), 3.93-9.89 (m, 1H), 3.41-3.38 (m, 5H), 3.30 (br, 2H), 3.24 (br, 2H), 3.11-2.98 (m, 2H), 2.27 (t, 2H, J = 7.5 Hz), 1.48-1.42 (m, 2H), 1.39-1.36 (m, 11H), 1.23 (br, 12H), 1.06 (d, 3H, J = 5.5 Hz)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.5, 168.6, 154.5, 79.8, 68.4, 67.6, 45.3, 33.0, 29.6(3), 29.5(2), 29.4, 29.3, 28.7, 27.0, 25.4, 20.9

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 (t, 1H, J = 5.5 Hz), 3.82 (dd, 1H, J = 6.0 Hz, J = 8.0 Hz), 3.40-3.38 (m, 4H), 3.31-3.29 (m, 2H), 3.24 (br, 2H), 3.11-3.01 (m, 2H), 2.48-2.41 (m, 2H), 2.27 (t, 2H, J = 7.5 Hz), 2.04 (s, 3H), 1.97-1.84 (m, 2H), 1.46-1.43 (m, 2H), 1.39 (s, 11H), 1.23 (br, 12H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.5, 169.3, 154.5, 79.8, 61.3, 45.3, 41.4, 33.0, 31.4, 30.1, 29.7, 29.6(2), 29.5(2), 29.3, 28.7, 27.0, 25.4, 15.3

Compound 8_E

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 (t, 1H, J = 5.5 Hz), 3.73 (dd, 1H, J = 6.0 Hz, J = 7.5 Hz), 3.40-3.38 (m, 4H), 3.30 (br, 2H), 3.24 (br, 2H), 3.07-3.03 (m, 2H), 2.27 (t, 2H, J = 7.5 Hz), 2.22 (t, 2H, J = 7.5 Hz), 1.93-1.82 (m, 2H), 1.45 (br, 1H), 1.40-1.37 (m, 21H), 1.26-1.21 (m, 12H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 172.2, 171.9, 171.5, 169.2, 80.6, 79.8, 61.7, 45.3, 42.5, 41.8, 39.2, 33.0, 31.7, 29.7, 29.6,(2), 29.5(2), 29.4, 28.7, 28.4, 27.7, 27.2, 26.9, 25.4

¹H NMR (500 MHz, DMSO- d_6) δ 8.16 (t, 1H, J = 5.5 Hz), 3.43-3.38 (m, 5H), 3.30 (br, 2H), 3.24 (br, 2H), 3.14-3.08 (m, 1H), 3.04-3.00 (m, 1H), 2.27 (t, 2H, J = 7.5 Hz), 1.86-1.81 (m, 1H), 1.53-1.42 (m, 3H), 1.39 (s, 12H), 1.23 (br, 11H), 1.19-1.10 (m, 1H), 0.86-0.82 (m, 6H)

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.5, 169.4, 154.5, 79.8, 67.0, 45.3, 41.4, 39.1, 36.3, 33.0, 29.6(3), 29.5(2), 29.3, 28.7, 27.0, 25.4, 25.3, 15.9, 11.2

General Procedure for Compounds 9

Alkynes with amino acid side-chains are forms changed from amino acids as the following.

Alkynes corresponding to Gly, Ser, and Glu were obtained from commercial source and used without further purification. Thr², Ile³, Lys^{4,5} are known compounds.

Compound 9_M

To a solution of 5-chloro-1-pentyne (1.0 eq.) in DMF (0.2 M) was added sodium thiomethoxide (1.0 eq), and then the mixture was stirred at 50 °C for 4 h.⁷ The reaction mixture was diluted with H_2O and extracted with ether (x3). The combined organic phases were dried over Na₂SO₄. After completely removing the solvent, the compound **9_M** was purified by flash chromatography (EtOAc/Hexanes).

¹H NMR (500 MHz, CDCl₃) δ 2.60 (t, 2H, J = 11.5 Hz), 2.35-2.29 (td, 2H, J = 4.5 Hz, J = 12.0 Hz), 2.10 (s, 3H), 1.96 (t, 1H, J = 4.5 Hz), 1.86-1.77 (m, 2H)

¹³C NMR (125 MHz, CDCl₃) N.A.

Compound 9_R

To a solution of *N*-Boc-hex5-ynylamine (1.0 eq) in EtOAc:MeOH(10:1, 0.25 M) was slowly added acetyl chloride (7.0 eq) at 0 °C. The mixture was stirred at 0 °C for 2h. After 2h, the mixture was warmed to room temperature, and stirred for 4 h. The solvent was removed and then the residue was dissolved in THF (1.0 M). To the mixture was *tert*-butyl (1*H*-pyrazol-1-yl)methylenedicarbamate (1.0 eq) and Hunig's base (0.6 eq). The resulting suspension was stirred at 25 °C for 48 h. After completely removing the solvent, the compound **9_R** was purified by flash chromatography (EtOAc/Hexanes).⁶

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.50 (s, 1H), 8.30 (t, 1H, J = 5.5 Hz), 3.28 (td, 2H, J = 7.0 Hz, J = 12.5 Hz), 2.76 (t, 1H, J = 2.5 Hz), 2.18 (td, 2H, J = 3.0 Hz, J = 7.5 Hz), 1.58-1.55 (m, 2H), 1.47-1.43 (m, 11H), 1.38 (s, 9H) ¹³C NMR (125 MHz, DMSO-*d*₆) δ 163.8, 155.9, 152.8, 85.0, 83.5, 78.8, 72.1, 40.3, 28.7, 28.5, 28.3, 26.0, 18.1

General Procedure for Compounds 10

Compound **8** (1.05 eq) and **9** (1.0 eq.) were dissolved in THF:H₂O (5:1, 0.25 M), and then copper powder (1.0 eq.) and 1*N* CuSO₄ (aq., 0.01 eq.) were added. The mixture was stirred at 25 °C for 24 - 48 h. After the reaction, the copper powder was removed by filtration through Celite with CH_2Cl_2 or EtOAc. The filtrate was washed with *sat.* NH₄Cl (aq.): NH₄OH (v:v=9:1), and then brine. The organic layer was dried over Na₂SO₄. After completely removing the solvent, the compound **10** derivatives were purified by flash chromatography (MeOH:CH₂Cl₂).

Scheme S5. Synthesis of Compounds 10

¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 6.74 (br, 1H), 5.09 (dd, 1H, J = 6.0 Hz, J = 9.0 Hz), 4.63 (s, 1H), 3.58-3.56 (m, 2H), 3.42 (s, 4H), 3.39-3.37 (m, 2H), 3.18 (td, 3H, J = 7.0 Hz, J = 13.0 Hz), 3.07-3.02 (m, 2H),

2.70 (dd, 1H, J = 6.0 Hz, J = 14.0 Hz), 2.51 (dd, 1H, J = 7.5 Hz, J = 13.0 Hz), 2.30 (t, 2H, J = 8.0 Hz), 2.27-2.23 (m, 1H), 2.13-2.09 (m, 2H), 1.75-1.73 (m, 1H), 1.61-1.56 (m, 3H), 1.52-1.46 (m, 2H), 1.45 (s, 9H), 1.44-1.41 (br, 11H), 1.32-1.15 (m, 14H), 0.89 (t, 3H, J = 7.5 Hz), 0.86 (d, 3H, J = 6.0 Hz)

¹³C NMR (125 MHz, CDCl₃) δ N.A.

MS (MALDI, m/z) calcd for $C_{38}H_{70}N_7O_6$ (M+H)⁺ 770.54, found 770.56

¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.02 (s, 1H), 5.19 (dd, 1H, J = 6.5 Hz, J = 9.0 Hz), 4.77 (s, 1H), 3.59-3.57 (m, 2H), 3.43 (br, 4H), 3.38-3.36 (m, 2H), 3.18 (td, 3H, J = 6.0 Hz, J = 13.0 Hz), 3.03 (br, 2H), 2.80 (t, 2H, 7.5 Hz), 2.40-2.36 (m, 2H), 2.31 (t, 2H, J = 7.5 Hz), 2.03-2.00 (m, 2H), 1.59-1.56 (m, 2H), 1.52-1.45 (m, 2H), 1.44 (s, 9H), 1.42 (br, 11H), 1.26-1.19 (m, 16H)

¹³C NMR (125 MHz, CDCl₃) δ 176.1, 172.6, 168.5, 156.6, 155.0, 147.5, 121.6, 80.6, 79.5, 64.5, 45.7, 41.6, 40.2, 40.0, 33.6, 33.5, 32.8, 30.0, 29.6(2), 29.5, 29.3, 28.6(2), 27.0, 25.5, 25.0, 24.5, 23.1

MS (MALDI, m/z) calcd for $C_{37}H_{66}N_7O_8$ (M+H)⁺ 736.50, found 736.48

¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 6.71 (br, 1H), 5.06 (dd, 1H, J = 10.0 Hz, J = 15.5 Hz), 4.63 (br, 1H), 3.58-3.55 (m, 2H), 3.42 (br, 4H), 3.40-3.36 (m, 2H), 3.18 (td, 2H, J = 11.0 Hz, J = 22.0 Hz), 3.06-3.01 (m, 2H), 2.34 (s, 3H), 2.33 (t, 2H, J = 3.5 Hz), 2.78-1.97 (m, 2H), 1.16-1.56 (m, 2H), 1.54-1.47 (m, 2H), 1.44 (s, 9H), 1.43 (s, 11H), 1.30-1.18 (m, 14H)

¹³C NMR (125 MHz, CDCl₃) δ 172.3, 168.4, 156.3, 154.9, 80.5, 79.4, 64.7, 45.7, 41.6, 40.2, 40.0, 33.6, 32.9, 29.6(3), 29.5(2), 29.4, 29.3, 28.7, 28.6, 27.0, 25.5, 23.2, 11.1 (two carbon peaks on triazole ring are missed, but methyl group peak on the triazole ring is shown in 11.1. In addition, H NMR clearly shows a proton peak (7.51 pm) on the triazole.)

MS (MALDI, m/z) calcd for $C_{34}H_{62}N_7O_6$ (M+H)⁺ 664.48, found 664.24

¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 6.98 (br, 1H), 6.37 (dd, 1H, J = 4.0 Hz, J = 5.0 Hz), 4.30 (dd, 1H, J = 5.5 Hz, J = 12.0 Hz), 4.19 (dd, 1H, J = 4.0 Hz, J = 12.0 Hz), 3.58-3.56 (m, 2H), 3.41 (s, 4H), 3.40-3.38 (m, 2H), 3.22 (td, 2H, J = 7.0 Hz, J = 13.0 Hz), 2.87 (t, 2H, J = 6.5 Hz), 2.56 (t, 2H, J = 7.5 Hz), 2.32 (t, 2H, J = 7.5 Hz), 2.09 (s, 3H), 2.03-1.97 (m, 2H), 1.63-1.57 (m, 2H), 1.47 (s, 11H), 1.33-1.24 (m, 12H)

OH

 13 C NMR (125 MHz, CDCl₃) δ 172.2, 167.1, 154.8, 147.6, 122.0, 80.5, 76.9, 65.1, 63.0, 45.6, 41.6, 40.1, 33.8, 33.6, 29.6, 29.5(2), 29.4, 29.3, 29.2, 28.6(2), 26.9, 25.4, 15.6

MS (MALDI, m/z) calcd for $C_{29}H_{53}N_6O_5S$ (M+H)⁺ 597.38, found 597.38

S25

¹H NMR (500 MHz, CDCl₃) δ 7.74 (s, 1H), 7.10 (br, 1H), 5.18 (dd, 1H, J = 6.5 Hz, J = 9.0 Hz), 4.76 (br, 1H), 3.91 (t, 2H, J = 6.0 Hz), 3.58-3.56 (m, 2H), 3.42 (br, 4H), 3.39-3.37 (m, 2H), 3.18 (td, 2H, J = 6.0 Hz, J = 13.5 Hz), 3.07-3.01 (m, 2H), 2.95 (t, 2H, J = 6.0 Hz), 2.70 (br, 1H), 2.31 (t, 2H, J = 7.5 Hz), 2.25-2.19 (m, 1H), 2.13-2.06 (m, 1H), 1.62-1.56 (m, 2H), 1.50-1.47 (m, 2H), 1.45 (s, 9H), 1.41 (s, 11H), 1.32-1.29 (m, 14H)

 13 C NMR (125 MHz, CDCl₃) δ 172.0, 167.9, 156.2, 154.7, 145.6, 121.8, 80.3, 79.2, 64.3, 61.2, 45.4, 41.3, 39.8, 33.3, 32.4, 29.6, 29.3(2), 29.2(2), 29.1, 29.0(2), 28.7, 28.4, 28.3, 26.6, 25.2, 22.7

MS (MALDI, m/z) calcd for $C_{35}H_{64}N_7O_7$ (M+H)⁺ 694.49, found 694.43

¹H NMR (500 MHz, CDCl₃) δ 8.36 (t, 1H, J = 9.5 Hz), 7.58 (s, 1H), 6.79 (t, 1H, J = 9.0 Hz) 5.29 (dd, 1H, J = 10.0 Hz, J = 15.0 Hz), 3.60-3.54 (m, 2H), 3.43 (s, 4H), 3.39-3.34 (m, 4H), 3.28-3.12 (m, 2H), 2.71 (dd, 1H, J = 10.0 Hz, J = 24.5 Hz), 2.51 (dd, 1H, J = 13.5 Hz, J = 24.0 Hz), 2.35-2.29 (m, 3H), 2.26-2.22 (m, 1H), 2.17-2.07 (m, 1H), 1.95 (br, 2H), 1.77-1.70 (m, 1H), 1.63-1.51 (m, 3H), 1.49 (s, 9H), 1.48 (s, 8H), 1.46-1.43 (m, 11H), 1.30-1.16 (m, 12H), 0.90 (t, 3H, J = 12.5 Hz), 0.87 (d, 3H, J = 12.5 Hz)

NBoc

BocHN

 13 C NMR (125 MHz, CDCl₃) δ 171.8, 168.0, 162.5, 156.2, 154.6, 152.9, 147.3, 121.1, 83.5, 80.2, 79.9, 63.1, 45.3, 41.2, 39.7, 39.4, 34.8, 33.3, 32.6, 30.1, 29.3, 29.2(2). 29.1, 29.0, 28.2, 28.1, 27.9, 26.6, 25.3, 25.2, 18.9, 11.3

MS (MALDI, m/z) calcd for $C_{43}H_{78}N_9O_8$ (M+H)⁺ 848.60, found 848.75

¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 6.30 (br, 1H) 5.00 (s, 1H), 4.17-4.11 (m, 1H), 3.59-3.56 (m, 2H), 3.43 (s, 4H), 3.43-3.37 (m, 2H), 3.21 (td, 2H, J = 11.5 Hz, J = 21.5 Hz), 2.94 (br, 1H) 2.91(dd, 1H, J = 6.5 Hz, J = 25.0 Hz), 2.79 (dd, 1H, J = 13.5 Hz, J = 25.0 Hz), 2.34-2.28 (m, 2H), 1.63-1.53 (m, 2H), 1.45 (s, 11H), 1.30-1.20 (m, 15H)

¹³C NMR (125 MHz, CDCl₃) δ 172.2, 165.5, 161.5, 154.8, 147.5, 123.7, 80.6, 67.2, 53.3, 45.7, 41.6, 40.1, 35.1, 33.6, 29.6, 29.5, 29.4(2), 29.3, 28.7, 26.9, 25.5, 23.2

MS (MALDI, m/z) calcd for $C_{27}H_{49}N_6O_5$ (M+H)⁺ 537.38, found 537.35

¹H NMR of **10_TG**

¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (t, 1H, J = 5.5 Hz), 7.88 (s, 1H), 6.77 (t, 1H, J = 6.0 Hz), 4.95 (d, 1H, J = 11.0 Hz), 3.41-3.25 (m, 8H), 3.15-2.95 (m, 2H), 2.89 (q, 2H, J = 7.5 Hz), 2.59 (t, 2H, J = 6.0 Hz), 2.29 (t, 2H, J = 6.0 Hz), 2.20 (m, 1H), 1.58 (m, 2H), 1.39 (m, 24H), 1.26 (m, 15H), 0.90 (d, 3H, J = 6.5 Hz), 0.75 (t, 3H, J = 7 Hz)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5, 168.1, 156.2, 154.4, 147.6, 120.9, 95.0, 79.8, 77.9, 67.8, 45.31, 41.4, 39.2, 37.2, 33.0, 29.9, 29.6, 29.6, 29.5, 29.3, 29.3, 28.9, 28.7, 26.9, 26.6, 25.7, 25.4, 25.0, 15.7, 10.5

MS (MALDI, m/z) calcd for $C_{38}H_{70}N_7O_8$ (M+H)⁺ 720.54, found 720.58

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.42 (t, 1H, J = 5.5 Hz), 7.88 (s, 1H), 6.78 (t, 1H, J = 6.0 Hz), 5.19 (t, 1H, J = 8.0 Hz), 3.40-3.25 (m, 8H), 3.11-2.99 (m, 2H), 2.90 (q, 2H, J = 6.5 Hz), 2.59 (t, 2H, J = 6.0 Hz), 2.29-2.04 (m, 6H), 1.58 (m, 2H), 1.39 (m, 37H), 1.21 (m, 14H)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5(2), 167.8, 156.2, 154.4, 147.6, 121.4, 80.7, 79.8, 77.9, 62.5, 45.3, 41.4, 39.3, 33.0, 31.5, 29.9, 29.7, 29.6(2), 29.5, 29.3(2), 28.9, 28.7, 28.4, 28.0, 26.9, 26.6, 25.7, 25.4

MS (MALDI, m/z) calcd for $C_{41}H_{74}N_7O_8$ (M+H)⁺ 792.06, found 792.64

¹H NMR of **10_KE**

Compound 10_KG

¹H NMR (500 MHz, DMSO- d_6) δ 8.26 (t, 1H, J = 5.5 Hz), 7.76 (s, 1H), 6.79 (t, 1H, J = 6.0 Hz), 4.98 (s, 2H), 3.41-3.25 (m, 10H), 3.08 (q, 2H, J = 7.5 Hz), 2.90 (q, 2H, J = 6.5 Hz), 2.60 (t, 2H, J = 7.5), 2.29 (t, 2H, J = 7.5), 1.40-1.36 (m, 30H), 1.24 (m, 16H)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5, 165.9, 156.2, 154.5, 147.2, 123.9, 79.8, 77.9, 55.6, 52.2, 45.3, 41.4, 39.4, 33.0, 30.0, 29.7, 29.6(2), 29.5, 29.4(2), 28.9, 28.7, 27.0, 26.6, 25.6, 25.4

MS (MALDI, m/z) calcd for $C_{34}H_{62}N_7O_6$ (M+H)⁺ 664.48, found 664.49

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.46 (t, 1H, J = 5.5 Hz), 7.94 (s, 1H), 5.30 (m, 1H), 4.69 (t, 1H, J = 6.0 Hz), 3.64 (dd, 2H), 3.41-3.34 (m, 10H), 3.10-3.00 (m, 2H), 2.76 (t, 2H, J = 7.5 Hz), 2.29-2.26 (m, 6H), 2.03 (s, 3H), 1.40 (m, 11H), 1.22 (m, 12H)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5, 167.9, 154.5, 145.1, 122.1, 79.8, 62.2, 61.0, 55.6, 41.4, 40.7, 39.4, 33.0, 32.3, 29.9, 29.6(3), 29.5, 29.4, 29.3, 28.7, 15.1

MS (MALDI, m/z) calcd for $C_{29}H_{53}N_6O_5S$ (M+H)⁺ 597.38, found 597.60

¹H NMR of **10_SM**

Compound 10_KS

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.40 (t, 1H, J = 5.5 Hz), 7.86 (s, 1H), 6.79 (t, 1H, J = 6.0 Hz), 5.28-5.22 (m, 2H), 3.92 (t, 2H, J = 6.0 Hz), 3.41-3.25 (m, 10H), 3.06 (q, 2H, J = 7.5 Hz), 2.97 (q, 2H, J = 7.5 Hz), 2.60 (t, 2H, J = 6.0 Hz), 2.29 (t, 2H, J = 6.0 Hz), 1.59 (m, 2H), 1.40 (m, 28H), 1.24 (m, 16H)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5, 166.9, 156.2, 154.5, 147.0, 121.7, 79.8, 78.0, 65.5, 62.1, 45.3, 41.4, 39.4, 33.0, 30.0, 29.6(3), 29.5, 29.4, 29.3, 28.9, 28.7, 26.9, 26.7, 25.8, 25.4

MS (MALDI, m/z) calcd for $C_{35}H_{64}N_7O_7$ (M+H)⁺ 694.49, found 694.51

¹H NMR (500 MHz, DMSO-d₆) δ 11.50 (s, 1H), 8.54 (t, 1H, J = 5.5 Hz), 8.30 (t, 1H, J = 5.5 Hz), 7.90 (s, 1H), 4.96 (d, 1H, J = 11.0 Hz), 3.40-3.25 (m, 10H), 3.16 (m, 1H), 3.10 (m, 1H), 2.64 (t, 2H, J = 6.0 Hz), 2.29 (t, 2H, J = 6.0 Hz), 2.19 (m, 1H), 1.60 (m, 2H), 1.51 (m, 15H), 1.39 (m, 22H), 1.20 (m, 12H), 0.95 (d, 3H, J = 6.5 Hz), 0.75 (t, 3H, J = 7.0 Hz)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.4, 168.0, 163.8, 155.9, 154.4, 152.8, 147.4, 121.1, 83.5, 79.8, 78.7, 67.8, 55.6, 45.3, 41.4, 39.2, 37.2, 33.0, 29.6(2), 29.5, 29.3(2), 28.8, 28.7(2), 28.3, 26.9, 25.4(2), 25.0, 15.7, 10.5

MS (MALDI, m/z) calcd for $C_{43}H_{78}N_9O_8$ (M+H)⁺ 848.60, found 848.57

Compound 10_GT

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.49 (t, 1H, J = 5.5 Hz), 7.85 (s, 1H), 5.13 (d, 1H, J = 6.0 Hz), 5.012 (d, 1H, J = 6.0 Hz), 4.23 (m, 1H), 3.40-3.26 (m, 10H), 3.11-2.98 (m, 2H), 2.29 (t, 2H, J = 7.5 Hz), 2.22 (s, 3H), 1.47 (m, 14H), 1.24 (m, 12H), 1.06 (d, 3H, J = 6.0 Hz)

¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.5, 167.2, 154.5, 141.9, 122.3, 79.8, 69.8, 67.1, 45.3, 41.4, 39.3, 33.0, 29.6(3), 29.5, 29.3(2), 28.7, 27.0, 25.4, 20.9, 11.3

MS (MALDI, m/z) calcd for $C_{27}H_{49}N_6O_5 (M+H)^+$ 537.38, found 537.49

D. General Procedure and Preparation of Bivalent Mimics

General syntheses for bivalent mimics were modified from the published papers.^{6,8} Compounds **10** (1.0 eq.) were treated with 50% TFA in CH₂Cl₂ for 12h at 25 °C and then the solvent was removed. The resulting residue was dissolved in THF (0.04 M), and then tag **11** (1.0 eq) and K₂CO₃ (4.0 eq.) were added. The suspension was stirred for 18 h at 25 °C and then the solvent was removed. Crude product **12** was used for the next step without further purification. The resulting crude product **12** was dissolved in DMSO (0.04 M), and then another deprotected compound **10'** and K₂CO₃ (4.0 eq.) were added. The suspension was stirred for 10 – 14 days at 25 or 50 °C and the reaction was monitored by analytical HPLC. After the starting material was consumed, the mixture was lyophilized to remove DMSO. The materials were re-dissolved in 1:1 mixture of H₂O/CH₃CN, and then purified by preparative HPLC to yield the final products **1**.

'nн

	compound code	sequence (R ¹ R ² -R ³ R ⁴)	SEDEX purity (%)	retention time (min)	chemical formula	[M+H]⁺ calculated	[M+H]⁺ found
1	KB1365	KI-KI	100	19.0	C ₆₈ H ₁₂₁ N ₁₈ O ₇	1302.0	1302.0
2	KB1366	KI-KG	100	17.0	C ₆₄ H ₁₁₃ N ₁₈ O ₇	1245.7	1245.9
3	KB1367	KI-KE	100	17.2	C ₆₇ H ₁₁₇ N ₁₈ O ₉	1317.9	1317.9
4	KB1368	KI-KS	100	16.6	C ₆₅ H ₁₁₅ N ₁₈ O ₈	1275.9	1275.8
5	KB1369	KI-GT	100	16.7	C ₆₂ H ₁₀₈ N ₁₇ O ₈	1218.9	1218.9
6	KB1370	KI-RI	100	19.6	C ₆₈ H ₁₂₁ N ₂₀ O ₇	1330.0	1330.0
7	KB1371	KI-SM	100	17.0	C ₆₄ H ₁₁₂ N ₁₇ O ₈ S	1278.9	1278.9
8	KB1372	KG-KG	100	15.6	$C_{60}H_{105}N_{18}O_7$	1189.8	1189.8
9	KB1373	KG-KE	100	14.4	$C_{63}H_{109}N_{18}O_9$	1261.9	1262.0
10	KB1374	KG-KS	100	13.2	C ₆₁ H ₁₀₇ N ₁₈ O ₈	1219.9	1219.8
11	KB1375	KG-GT	100	14.8	$C_{58}H_{100}N_{17}O_8$	1162.8	1162.7
12	KB1376	KG-RI	100	17.6	$C_{64}H_{113}N_{20}O_7$	1273.9	1273.8
13	KB1377	KG-SM	100	16.9	C ₆₀ H ₁₀₄ N ₁₇ O ₈ S	1222.8	1222.8
14	KB1378	KE-KE	100	15.0	C ₆₆ H ₁₁₃ N ₁₈ O ₁₁	1333.9	1333.9
15	KB1379	KE-KS	91	14.9	C ₆₄ H ₁₁₁ N ₁₈ O ₁₀	1291.9	1291.9
16	KB1380	KE-GT	100	16.7	C ₆₁ H ₁₀₄ N ₁₇ O ₁₀	1234.8	1234.7
17	KB1381	KE-RI	100	17.1	C ₆₇ H ₁₁₇ N ₂₀ O ₉	1345.9	1345.8
18	KB1382	KE-SM	100	16.7	C ₆₃ H ₁₀₈ N ₁₇ O ₁₀ S	1294.8	1294.8

19	KB1383	KS-KS	100	14.7	$C_{62}H_{109}N_{18}O_9$	1249.9	1249.9
20	KB1384	KS-GT	100	14.4	$C_{59}H_{102}N_{17}O_9$	1192.8	1192.8
21	KB1385	KS-RI	100	17.3	$C_{65}H_{115}N_{20}O_8$	1303.9	1303.9
22	KB1386	KS-SM	100	17.0	C ₆₁ H ₁₀₆ N ₁₇ O ₉ S	1252.8	1252.8
23	KB1387	GT-GT	100	15.3	$C_{56}H_{95}N_{16}O_9$	1135.7	1135.6
24	KB1388	GT-RI	100	18.8	C ₆₂ H ₁₀₈ N ₁₉ O ₈	1246.9	1246.9
25	KB1389	GT-SM	98	18.1	$C_{58}H_{99}N_{16}O_9S$	1195.8	1195.6
26	KB1390	RI-RI	100	18.9	C ₆₈ H ₁₂₁ N ₂₂ O ₇	1358.0	1357.9
27	KB1391	RI-SM	100	19.7	$C_{64}H_{112}N_{19}O_8S$	1306.9	1306.9
28	KB1392	SM-SM	100	18.8	$C_{60}H_{103}N_{16}O_9S_2$	1255.8	1255.7
29	KB1393	SM	100	15.7	$C_{24}H_{45}N_6O_3S$	497.3	497.1
30	KB1394	RI	100	11.3	$C_{28}H_{54}N_9O_2$	548.4	548.3
31	KB1395	KI	100	11.5	$C_{28}H_{54}N_7O_2$	520.4	520.2
32	KB1396	KG	100	10.0	$C_{24}H_{46}N_7O_2$	464.4	464.1
33	KB1397	KE	100	10.1	$C_{27}H_{50}N_7O_4$	536.4	536.2
34	KB1398	KS	100	8.6	C ₂₅ H ₄₈ N ₇ O ₃	494.4	494.1
35	KB1399	GT	100	9.7	$C_{22}H_{41}N_6O_3$	437.3	437.1
36	KB1445	TG-TG	98	14.5	$C_{56}H_{95}N_{16}O_9$	1135.8	1135.5
37	KB1446	TG-MS	100	15.8	$C_{58}H_{99}N_{16}O_9S$	1195.8	1195.6
38	KB1447	TG-EK	96	13.8	$C_{61}H_{104}N_{17}O_{10}$	1234.8	1234.6
39	KB1448	TG-GK	100	14.2	C ₅₈ H ₁₀₀ N ₁₇ O ₈	1162.8	1162.5
40	KB1449	TG-SK	100	14.4	$C_{59}H_{102}N_{17}O_9$	1192.8	1192.8
41	KB1450	TG-IK	100	16.3	$C_{62}H_{108}N_{17}O_8$	1218.9	1218.6
42	KB1451	TG-IR	94	17.1	$C_{62}H_{108}N_{19}O_8$	1246.9	1246.7
43	KB1452	MS-MS	90	17.2	$C_{60}H_{103}N_{16}O_9S_2$	1255.8	1255.8
44	KB1453	MS-EK	93	14.9	C ₆₃ H ₁₀₈ N ₁₇ O ₁₀ S	1294.8	1294.8
45	KB1454	MS-GK	100	16.8	C ₆₀ H ₁₀₄ N ₁₇ O ₈ S	1222.8	1222.6
46	KB1455	MS-SK	100	14.9	$C_{61}H_{106}N_{17}O_9S$	1252.8	1252.7
47	KB1456	MS-IK	92	17.7	C ₆₄ H ₁₁₂ N ₁₇ O ₈ S	1278.9	1278.7
48	KB1457	MS-IR	100	17.8	$C_{64}H_{112}N_{19}O_8S$	1306.9	1306.7
49	KB1458	EK-EK	100	12.9	C ₆₆ H ₁₁₃ N ₁₈ O ₁₁	1333.9	1333.8
50	KB1459	EK-GK	97	13.0	$C_{63}H_{109}N_{18}O_9$	1261.9	1261.9
51	KB1460	EK-SK	100	12.5	$C_{64}H_{111}N_{18}O_{10}$	1291.9	1292.0
52	KB1461	EK-IK	84	15.7	C ₆₇ H ₁₁₇ N ₁₈ O ₉	1317.9	1318.0
53	KB1462	EK-IR	98	17.0	$C_{67}H_{117}N_{20}O_9$	1345.9	1346.0
54	KB1463	GK-GK	100	13.4	$C_{60}H_{105}N_{18}O_7$	1189.8	1190.1

S43

55	KB1464	GK-SK	95	13.5	C ₆₁ H ₁₀₆ N ₁₈ O ₈	1218.8	1218.7
56	KB1465	GK-IK	99	15.4	C ₆₄ H ₁₁₃ N ₁₈ O ₇	1245.9	1245.7
57	KB1466	GK-IR	96	15.6	C ₆₄ H ₁₁₃ N ₂₀ O ₇ 1273.9		1273.8
58	KB1467	SK-SK	100	12.9	C ₆₂ H ₁₀₉ N ₁₈ O ₉	1249.9	1249.7
59	KB1468	SK-IK	100	14.8	C ₆₅ H ₁₁₅ N ₁₈ O ₈	1275.9	1275.7
60	KB1469	SK-IR	89	15.4	C ₆₅ H ₁₁₅ N ₂₀ O ₈	1303.9	1303.7
61	KB1470	IK-IK	100	16.5	C ₆₈ H ₁₂₁ N ₁₈ O ₇	1302.0	1302.0
<mark>62</mark>	KB1471	IK-IR	100	17.8	C ₆₈ H ₁₂₁ N ₂₀ O ₇	1330.0	1329.8
63	KB1472	IR-IR	100	17.6	$C_{68}H_{121}N_{22}O_7$	1358.0	1357.7
64	KB1473	TG	100	8.9	$C_{22}H_{41}N_6O_3$	437.3	437.1
65	KB1474	MS	97	11.1	$C_{24}H_{45}N_6O_3S$	497.3	497.2
66	KB1475	EK	100	8.6	$C_{27}H_{50}N_7O_4$	536.4	536.3
67	KB1476	GK	100	8.8	$C_{24}H_{46}N_7O_2$	464.4	464.2
68	KB1477	SK	94	8.0	$C_{25}H_{48}N_7O_3$	494.4	494.2
69	KB1478	IK	94	11.4	$C_{28}H_{54}N_7O_2$	520.8	520.3
70	KB1479	IR	100	11.4	$C_{28}H_{54}N_9O_2$	548.4	548.4
71	KB1480	TG-CAP	100	13.6	C ₃₈ H ₆₄ N ₁₁ O ₇	786.5	786.3
72	KB1481	MS-CAP	100	15.8	$C_{40}H_{68}N_{11}O_7S$	846.5	845.3
73	KB1482	EK-CAP	100	10.9	$C_{43}H_{73}N_{12}O_8$	885.6	885.2
74	KB1483	GK-CAP	100	14.2	$C_{40}H_{69}N_{12}O_6$	813.5	813.3
75	KB1484	SK-CAP	99	12.3	$C_{41}H_{71}N_{12}O_7$	843.6	843.3
76	KB1485	IK-CAP	100	16.1	C ₄₄ H ₇₇ N ₁₂ O ₆	869.6	869.4
77	KB1486	IR-CAP	100	18.0	C ₄₄ H ₇₇ N ₁₄ O ₆	897.6	897.4
78	KB1551	KI-IK	100	17.5	C ₆₈ H ₁₂₁ N ₁₈ O ₇	1302.0	1301.8
79	KB1552	KI-GK	100	15.6	C ₆₄ H ₁₁₂ N ₁₈ NaO ₇	1267.9	1267.8
80	KB1553	KI-EK	100	16.9	C ₆₇ H ₁₁₇ N ₁₈ O ₉	1317.9	1318.1
81	KB1554	KI-SK	100	15.1	C ₆₅ H ₁₁₅ N ₁₈ O ₈	1275.9	1275.6
82	KB1555	KI-TG	100	16.9	C ₆₂ H ₁₀₈ N ₁₇ O ₈	1218.9	1219.0
83	KB1556	KI-MS	100	18.7	C ₆₄ H ₁₁₂ N ₁₇ O ₈ S	1278.9	1278.9
84	KB1557	KG-IK	100	17.0	C ₆₄ H ₁₁₃ N ₁₈ O ₇	1245.9	1246.0
85	KB1558	KG-GK	100	14.7	C ₆₀ H ₁₀₄ N ₁₈ NaO ₇	1211.8	1211.8
86	KB1559	KG-EK	100	14.6	$C_{63}H_{109}N_{18}O_9$	1261.9	1261.9
87	KB1560	KG-SK	100	14.1	$C_{61}H_{107}N_{18}O_8$	1219.9	1219.8
88	KB1561	KG-TG	100	14.1	$C_{58}H_{100}N_{17}O_8$	1162.8	1162.9
89	KB1562	KG-IR	100	18.0	$C_{64}H_{113}N_{20}O_7$	1273.9	1274.1
90	KB1563	KG-MS	100	16.6	C ₆₀ H ₁₀₄ N ₁₇ O ₈ S	1222.8	1222.6

S44

				-			
91	KB1564	KE-IK	100	16.4	C ₆₇ H ₁₁₇ N ₁₈ O ₉	1317.9	1318.1
92	KB1565	KE-GK	99	13.5	$C_{63}H_{109}N_{18}O_9$	1261.9	1261.8
93	KB1566	KE-EK	100	15.0	C ₆₆ H ₁₁₃ N ₁₈ O ₁₁	1333.9	1333.9
94	KB1567	KE-SK	100	13.2	C ₆₄ H ₁₁₀ N ₁₈ NaO ₁₀ 1313.9		1313.9
95	KB1568	KE-TG	87	14.3	C ₆₁ H ₁₀₄ N ₁₇ O ₁₀	1234.8	1234.9
96	KB1569	KE-IR	99	16.7	$C_{67}H_{117}N_{20}O_9$	1345.9	1346.0
97	KB1570	KE-MS	100	15.4	C ₆₃ H ₁₀₈ N ₁₇ O ₁₀ S	1294.8	1294.6
98	KB1571	KS-IK	100	16.0	$C_{65}H_{115}N_{18}O_8$	1275.9	1275.8
99	KB1572	KS-GK	97	13.6	$C_{61}H_{107}N_{18}O_8$	1219.9	1219.9
100	KB1573	KS-EK	100	14.9	$C_{64}H_{111}N_{18}O_{10}$	1291.9	1291.9
101	KB1574	KS-SK	100	14.9	$C_{62}H_{109}N_{18}O_9$	1249.9	1249.8
102	KB1575	KS-TG	100	14.6	$C_{59}H_{102}N_{17}O_9$	1192.8	1192.7429
103	KB1576	KS-MS	99	15.4	$C_{61}H_{106}N_{17}O_9S$	1252.8	1252.5
104	KB1577	GT-IK	100	17.6	$C_{62}H_{108}N_{17}O_8$	1218.9	1218.7
105	KB1578	GT-GK	100	14.4	$C_{58}H_{100}N_{17}O_8$	1162.8	1162.9
106	KB1579	GT-EK	100	16.2	$C_{61}H_{104}N_{17}O_{10}$	1234.8	1234.8
107	KB1580	GT-SK	100	14.4	$C_{59}H_{102}N_{17}O_9$	1192.8	1192.9
108	KB1581	GT-TG	100	14.9	$C_{56}H_{95}N_{16}O_9$	1135.7	1135.9
109	KB1582	GT-IR	100	17.1	$C_{62}H_{108}N_{19}O_8$	1246.9	1247.0
110	KB1583	GT-MS	100	16.4	$C_{58}H_{99}N_{16}O_9S$	1195.8	1195.7
111	KB1584	RI-IK	100	19.3	$C_{68}H_{121}N_{20}O_7$	1330.0	1330.0
112	KB1585	RI-GK	100	16.5	$C_{64}H_{113}N_{20}O_7$	1273.9	1273.9
113	KB1586	RI-EK	100	17.3	C ₆₇ H ₁₁₇ N ₂₀ O ₉	1345.9	1346.1
114	KB1587	RI-SK	100	15.7	$C_{65}H_{115}N_{20}O_8$	1303.9	1304.1
115	KB1588	RI-TG	100	17.2	C ₆₂ H ₁₀₈ N ₁₉ O ₈	1246.9	1246.6
116	KB1589	RI-MS	100	18.2	$C_{64}H_{112}N_{19}O_8S$	1306.9	1306.6
117	KB1590	SM-IK	100	17.8	C ₆₄ H ₁₁₂ N ₁₇ O ₈ S	1278.9	1278.7
118	KB1591	SM-GK	100	15.7	C ₆₀ H ₁₀₄ N ₁₇ O ₈ S	1222.8	1222.8
119	KB1592	SM-EK	100	14.6	C ₆₃ H ₁₀₈ N ₁₇ O ₁₀ S	1294.8	1294.9
120	KB1593	SM-SK	100	15.0	$C_{61}H_{106}N_{17}O_9S$	1252.8	1252.6
121	KB1594	SM-TG	100	15.6	$C_{58}H_{99}N_{16}O_9S$	1195.8	1195.6
122	KB1595	SM-IR	100	18.3	$C_{64}H_{112}N_{19}O_8S$	1306.9	1306.8
123	KB1596	SM-MS	96	15.5	$C_{60}H_{103}N_{16}O_9S_2$	1255.8	1255.6
124	KB1597	KI-Cap	100	16.1	C ₄₄ H ₇₇ N ₁₂ O ₆	869.6	869.6
125	KB1598	KG-Cap	100	13.5	$C_{40}H_{69}N_{12}O_6$	813.5	813.4
126	KB1599	KE-Cap	94	14.6	C ₄₃ H ₇₃ N ₁₂ O ₈	885.6	885.5

127	KB1600	KS-Cap	100	13.0	C ₄₁ H ₇₁ N ₁₂ O ₇	843.6	843.5
128	KB1601	GT-Cap	100	16.6	$C_{38}H_{64}N_{11}O_7$	786.5	786.5
129	KB1602	02 RI-Cap 100		15.9	$C_{44}H_{77}N_{14}O_6$	897.6	897.6
130	KB1603	SM-Cap	100	14.8	C ₄₀ H ₆₈ N ₁₁ O ₇ S	846.5	846.3
131	KB1604	KI-IR	100	18.9	C ₆₈ H ₁₂₁ N ₂₀ O ₇	1330.0	1329.9
132	KB1605	KS-IR	100	15.3	$C_{65}H_{115}N_{20}O_8$	1303.9	1303.9
133	KB1606	RI-IR	100	19.6	C ₆₈ H ₁₂₁ N ₂₂ O ₇	1358.0	1357.7

F. Table S3. Characterization of Compounds with Biotin.

	compound code	TEG code	sequence (R ¹ R ² -R ³ R ⁴)	SEDEX purity (%)	retention time (min)	chemical formula	[M+H]⁺ calculated	[M+H]⁺ found
1	KB1923	KB1468	SK-IK	100	13.2	C ₆₅ H ₁₁₅ N ₂₀ O ₆ S	1303.9	1303.6
2	KB1924	KB1471	IK-IR	100	14.8	$C_{68}H_{121}N_{22}O_5S$	1358.0	1358.0
3	KB1925	KB1579	GT-EK	100	13.2	C ₆₁ H ₁₀₄ N ₁₉ O ₈ S	1262.8	1262.8
4	KB1926	KB1588	RI-TG	100	14.2	C ₆₂ H ₁₀₈ N ₂₁ O ₆ S	1274.9	1274.8
5	KB1927	KB1591	SM-GK	100	13.8	$C_{60}H_{104}N_{19}O_6S_2$	1250.7	1250.7
6	KB1811	KB1368	KI-KS	100	13.1	C ₆₅ H ₁₁₆ N ₂₀ O ₆ S	1304.9	1304.8

G. References

(1) Pattarawarapan, M.; Burgess, K. J. Med. Chem. 2003, 46, 5277-5291.

(2) Chaume, G.; Kuligowski, C.; Bezzenine-Laffolee, S.; Ricard, L.; Pancrazi, A.; Ardisson, J. Synthesis 2004, 3029-3036.

(3) Aronica, Laura A.; Terreni, S.; Caporusso, Anna M.; Salvadori, P. *Eur. J. Org. Chem.* **2001**, 2001, 4321-4329.

(4) Tojino, M.; Uenoyama, Y.; Fukuyama, T.; Ryu, I. Chemical Communications 2004, 0, 2482-2483.

(5) Hideto Ito, T. H., Hirohisa Ohmiya and Masaya Sawamura Beilstein J. Org. Chem. 2011, 7, 951-959.

(6) Angell, Y.; Chen, D.; Brahimi, F.; Saragovi, H. U.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 556-565.

(7) Capella, L.; Montevecchi, P. C.; Nanni, D. J. Org. Chem. 1994, 59, 3368-3374.

(8) Chen, D.; Brahimi, F.; Angell, Y.; Li, Y.-C.; Moscowicz, J.; Saragovi, H. U.; Burgess, K. ACS Chem. Biol. **2009**, *4*, 769-781