
A A review of MM algorithm for estimating parameters of Pólya

distribution

In this section, we briefly review the MM algorithm for fitting multivariate Pólya distributions as

developed in Zhou and Lange (2010). Assume there are I independent observations, and each one

is a vector of J non-negative integers. Denote the ith observation by Yi = {Yij : j = 1, . . . , J},
and denote all data by Y = {Yi : i = 1, . . . , I}. Define Ti =

∑
j Yij , and T = {Ti : i = 1, . . . , I}.

If Yi follows a Pólya distribution MP (Ti,α), where α = (α1, . . . , αJ). Then its probability

density is

P (Yi|Ti,α) =
Γ(|α|)

Γ(α1) · · ·Γ(αJ)

∫ (
Ti
Yi

) J∏
j=1

θ
Yij+αj−1
j dθ1 · · · dθJ

=

(
Ti
Yi

)
Γ(α1 + Yi1) · · ·Γ(αJ + YiJ)

Γ(|α|+ Ti)

Γ(|α|)
Γ(α1) · · ·Γ(αJ)

=

(
Ti
Yi

)∏J
j=1 αj(αj + 1) · · · (αj + Yij − 1)

|α|(|α|+ 1) · · · (|α|+ Ti − 1)
(A.1)

where |α| =
∑J

j=1 αj .

The joint probability density of the observed data is

P (Y|T,α) =
I∏
i=1

(
Ti
Yi

)∏J
j=1 αj(αj + 1) · · · (αj + Yij − 1)

|α|(|α|+ 1) · · · (|α|+ Ti − 1)
(A.2)

As shown by Zhou and Lange (2010), the maximum likelihood estimate (MLE) of α (or strictly

speaking, a local mode of α) can be obtained through a Minorization-Maximization (MM) algo-

rithm.

Conceptually, to maximize an objective function f(θ), an MM algorithm iterates between two

steps. In the first step, one uses the current parameter estimate θ(n) to construct a surrogate

function g(θ|θ(n)) such that g(θ|θ(n)) minorizes f(θ), i.e.,

f(θ) ≥ g(θ|θ(n)) ∀ θ 6= θ(n) (A.3)

f(θ(n)) = g(θ(n)|θ(n))

In the second step, one finds θ to maximize the surrogate function g(θ|θ(n)), which gives a new

parameter estimate θ(n+1). Since

f(θ(n+1)) ≥ g(θ(n+1)|θ(n)) ≥ g(θ(n)|θ(n)) = f(θ(n)) (A.4)

f(θ(n)) will never decrease as n increases. The algorithm will converge to a stationary point,

usually a mode of the objective function.

1



For fitting the Pólya distribution, the goal is to maximize the log-likelihood function which is

written by Zhou and Lange (2010) as:

l(α) = logP (Y|T,α) = −
∑
c

rc log(|α|+ c) +
J∑
j=1

∑
c

sjc log(αj + c) + constant

rc =
I∑
i=1

δ(Ti ≥ c+ 1), sjc =
I∑
i=1

δ(Yij ≥ c+ 1) (A.5)

Here c ranges from 0 to maxi(Ti) − 1. δ(.) is an indicator function. δ(.) = 1 if its argument is

true, and δ(.) = 0 otherwise.

Using two known inequalities

− log(c+ α) ≥ − log(c+ α(n))− 1

c+ α(n)
(α− α(n)), (A.6)

log(

J∑
j=1

αj) ≥
J∑
j=1

α
(n)
j∑J

j′=1 α
(n)
j′

log(

∑J
j′=1 α

(n)
j′

α
(n)
j

αj) (A.7)

for which the equality holds when α = α(n), one can obtain a surrogate function g(α|α(n)) that

minorizes l(α):

g(α|α(n)) = −
∑
c

rc
|α|

|α(n)|+ c
+

J∑
j=1

∑
c

sjc
α
(n)
j

α
(n)
j + c

log(αj) + constant (A.8)

By solving ∂g(α|α(n))/∂αj = 0, one can obtain the MM update in the nth iteration as:

α
(n+1)
j =

(∑
c

sjcα
(n)
j

α
(n)
j + c

)/(∑
c

rc

|α(n)|+ c

)
(A.9)

B Comparison between PolyaPeak and T-PIC

T-PIC analyzes the aligned sequence reads and report detected peaks. However, the software does

not rank the peaks. Therefore one cannot directly compare the PolyaPeak and T-PIC in terms

of peak ranking. To compare these two algorithms, we used a different approach. For each test

dataset, we first run T-PIC with a stringent p-value cutoff (1e-5) and other default parameters

to find peaks. We then chose the same number of peaks from the PolyaPeak ranked peak list.

The motif enrichment levels of these two peak lists were compared. In principle, one can also run

PolyaPeak first and then ask T-PIC to produce the same number of peaks by adjusting the cutoff.

However, in T-PIC the p-values are determined using Monte Carlo simulations. The resolution of
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the p-values depends on the number of simulations. With reasonably large number of simulations

(50,000) T-PIC was already very slow and required hours for a single run. One cannot afford

running T-PIC repeatedly by trial and error. For example, if one wants to decrease the peak

list size, one will have to use more stringent p-value cutoffs which will significantly increase the

computation time. Therefore we used our current strategy in which PolyaPeak was used to match

the number of peaks reported by T-PIC. The overall motif content is listed in the table below.

# peaks % with motif - PolyaPeak % with motif - T-PIC

mESC OCT4 4897 29.5 25.3

mESC MYCN 9388 32.1 26.1

K562 MAX 27113 17.8 16.6

K562 MYC 46675 49.5 45.3

HepG2 GABP 71793 6.6 3.9

HepG2 NRSF 58075 1.4 0.6

Our results show that in all datasets, PolyaPeak had higher or comparable percentage of peaks

that contain motifs compared to T-PIC. T-PIC reported large numbers of peaks without ranking

under the stringent p-value cutoff. We note that in real applications, biologists often wish to

pick up the top peaks to do follow-up experiments. Without a ranking, selecting candidates for

follow-up studies would be very difficult.

C Effects of the first step peak calling results

Since PolyaPeak works as peak ranker, its performance could be affected by the first step peak

calling results. For example, if the first step results have better spatial resolution, the peak

shapes can be better estimated which will subsequently improve the results. Throughout the

manuscripts, MACS was used as the first step peak caller. To evaluate the effects, we also tried

using GPS as the first step peak caller. The figure below shows the motif content comparisons.

For clarity, we only compared the results from MACS, GPS and PolyaPeak with MACS/GPS

as the first step peak caller (labeled as MACS+PolyaPeak and GPS+PolyaPeak). It shows that

PolyaPeak usually provide better rankings overall, that is, line 1 is higher than line 2 and line 3

is higher than line 4 in most datasets. These results demonstrate the robustness of PolyaPeak.
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(d) K562 MYC
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(e) HepG2 GABP
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(f) HepG2 NRSF
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