Supporting Information

Familial Alzheimer's Disease Osaka Mutant (Δ E22) β -Barrels Suggest an Explanation for the Different A $\beta_{1-40/42}$ Preferred Conformational States Observed by Experiment

Hyunbum Jang,[†] Fernando Teran Arce,[‡] Srinivasan Ramachandran,[‡] Bruce L. Kagan,[§] Ratnesh Lal,[‡] and Ruth Nussinov^{*,†,}∥

 [†]Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
[‡]Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Materials Science Program, University of California, San Diego, La Jolla, California 92093, USA
[§]Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90024, USA
[§]Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Corresponding Author

*R.N.: Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA, Tel: 301-846-5579, E-mail: nussinor@helix.nih.gov

Title Running Head: Structure of FAD-linked Osaka mutant $\Delta E22$ barrel

Figure S1. The initial barrel structures of MD simulations in ribbon representation for the (A) conformer 1 and (B) conformer 2 Osaka mutant (Δ E22) barrels, and the (C) conformer 1 and (D) conformer 2 A β_{1-42} barrels. In the peptide ribbon, hydrophobic, polar/Gly, positively charged, and negatively charged residues are colored white, green, blue, and red, respectively. Charged side-chains of three selected residues, Glu11 and Lys16 for both mutant and wild type barrels, and Glu22 for the wild type barrels only, are shown as threads.

Figure S2. The root-mean-squared deviation (RMSD) from the starting point for backbone heavy atoms of (A) the membrane embedded U-shaped portion and (B) extramembranous Nterminal portion of A β barrels: the conformer 1 (red lines) and conformer 2 (green line) Osaka mutant (Δ E22) barrels, and the conformer 1 (yellow line) and conformer 2 (blue line) A β_{1-42} barrels. The average root-mean-squared-fluctuation (RMSF) from the starting point for backbone atoms of each monomer for the (C) conformer 1 and (D) conformer 2 Osaka mutant (Δ E22) barrels, and the (E) conformer 1 and (F) conformer 2 A β_{1-42} barrels.

Figure S3. Time series of averaged interaction energy of the membrane embedded U-shaped portion of the peptide with lipids (upper panel), water (middle panel), and other peptides (bottom panel) for the conformer 1 and 2 Osaka mutant (Δ E22) barrels (denoted as D1 and D2, respectively), and the conformer 1 and 2 wild type A β_{1-42} barrels (denoted as W1 and W2, respectively).

Figure S4. Change in total charge in the pore as a function of the simulation time for the conformer 1 and 2 Osaka mutant (Δ E22) barrels (1st and 2nd rows), and the conformer 1 and 2 A β_{1-42} barrels (3rd and 4th rows). The pore height with cutoff along the pore axis, -1.8 < *z* < 1.8 nm was used.