SUPPLEMENTARY INFORMATION

Insight into α-Synuclein Misfolding and Plasticity from Differential Micelle Binding

Parichita Mazumder, Jae-Eun Suk and Tobias S. Ulmer

Department of Biochemistry & Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA

Figure S1. CG molecular dynamics simulation of SDS and SLAS assemblies	S2
Figure S2. Micelle- α S complex formation during coarse-grained MD simulations	S 3
Figure S3. Sequence and spatial distribution of α S hydrophobicities	S4
Figure S4. Evolution of structural parameter during CG MD simulations of micelle-bound α S	S5
Figure S5. Association of partially folded α S with micelles in all atom MD simulations	S 6
Figure S6. MD simulations of free SDS and SLAS micelles at atomic resolution	S 7
Figure S7. Evolution of backbone dihedral angles of αS^{SDS}_{NC} residues	S 8
Figure S8. Evolution of backbone dihedral angles of αS^{SLAS}_{CN} residues	S9
Figure S9. Evolution of backbone dihedral angles of αS^{SLAS}_{NC} residues	S10
Figure S10. Principal component analysis of α S-micelle complex CG-MD simulations	S11
Figure S11. Projections of CG MD trajectories on eigenvector planes	S12
Figure S12. Projections of RMSF along principal components	S13
Table S1. Micelle parameter of SLAS and SDS	S14
Table S2. Coarse-grain topology for SLAS	S15
Table S3. Summary of coarse-grained (CG) simulations	S16
Table S4. Fine-grain topology for SLAS	S17
Supplemental References	S19

Figure S1. Coarse-grain (CG) molecular dynamics simulations of SDS and SLAS micelle assembly. (a-b) Average distance of head group beads from the center of micelle mass, radium of gyrate (R_g), as a function of simulation time. (c-d) Snapshots of detergent associations at the simulation times indicated. Simulations started from two random detergent molecule distributions (sets I and II). The resulting micelles are denoted M1 and M2, respectively. For visual clarity, water and sodium ions are not shown.

Figure S2. Micelle- α S complex formation during coarse-grained molecular dynamics simulations. (a-c) Complex formation of (a) α S^{SDS}_{NC}, (b) α S^{SLAS}_{CN} and (c) α S^{SLAS}_{NC} with pre-equilibrated micelles M1 and M2 (see Figure S1). A first set of association simulations is depicted in Figure 3d-f.

Figure S3. Sequence and spatial distribution of \alphaS hydrophobicities. (a) Sequence distribution of α S hydrophobicity. The Kyte-Doolittle hydrophobicity scale was used with a window size of nine residues.¹ Center residues label segments. (b) Spatial distribution of membrane-facing residues for α S^{SLAS}_{NC} and α S^{SLAS}_{CN} structures. The residues that line the hydrophobic helix face are shown in color as depicted. The four-residue insert (Ala53-Ala56) changes the orientation of the membrane-facing helix faces with respect to its pseudorepeats sequence.²

Figure S4. Evolution of structural parameter during CG MD simulations of micelle-bound α S. (a) Micelle eccentricity and (b) distance between backbone beads of α S residues A11 and V70 as a function of simulation time.

Figure S5. Association of partially folded α S with SDS and SLAS micelles in all atom MD simulations. Number density profiles of the indicated groups relative to the center of micelle mass. Profiles for all-atom MD simulations calculated for the time period of 50-100 ns. For SDS- α S^{SDS}_{NC}, the Na⁺ distribution formed was ill-dispersed with no clear maxima and, for visual clarity, omitted.

Figure S6. MD simulations of free SDS and SLAS micelles at atomic resolution. At the end of CG simulations (Figure S1a-b), CG configurations were transformed to atomistic coordinates using the reverse-transformation algorithm of GROMACS,³ and all atom simulations were initiated. (a) Snapshots of detergent assemblies at the simulation times indicated. For clarity, water molecules were omitted. (b) Micelle eccentricity as a function of simulation time. (c) Number density profiles of the indicated groups relative to the micelle center of mass (COM) for the simulation period 5-30 ns.

Figure S7. Evolution of backbone dihedral angles of \alpha S_{NC}^{SDS} residues. (a) For relatively mobile residues, dihedral angles are shown at 0 ns (label 1), 20 ns (label 2), 40 ns (label 3), 50 ns (label 4), 60 ns (label 5), 70 ns (label 6), 80 ns (label 7) and 100 ns (label 8). (b) For less mobile residues, the same time points are shown without labels. In all panels, residues were grouped according to their α S pseudorepeat class (see Figure S3b).

Figure S8. Evolution of backbone dihedral angles of $\alpha S^{\text{SLAS}}_{\text{CN}}$ **residues.** (a) For relatively mobile residues, dihedral angles are shown at 0 ns (label 1), 20 ns (label 2), 40 ns (label 3), 50 ns (label 4), 60 ns (label 5), 70 ns (label 6), 80 ns (label 7) and 100 ns (label 8). (b) For less mobile residues, the same time points are shown without labels. In all panels, residues were grouped according to their α S pseudorepeat class (see Figure S3b).

Figure S9. Evolution of backbone dihedral angles of αS^{SLAS}_{NC} **residues.** Dihedral angles are shown at 0 ns (label 1), 20 ns (label 2), 40 ns (label 3), 50 ns (label 4), 60 ns (label 5), 70 ns (label 6), 80 ns (label 7) and 100 ns (label 8). In all panels, residues were grouped according to their αS pseudorepeat class (see Figure S3b).

Figure S10. Principal component analysis (PCA) of α S-micelle complex CG-MD simulations. (a) The 20 largest eigenvalues obtained for the simulations of Figure 3d-f shown in descending order. The inserts depict the percentage of fluctuations captured by the corresponding eigenvectors. (b) Fluctuations along the directions of the indicated eigenvector or principal components (PC) as a function of simulation time.

Figure S11. Projections of the (a) αS_{NC}^{SDS} , (b) αS_{NC}^{SLAS} and (c) αS_{CN}^{SLAS} CG MD trajectories on planes defined by two principal components (eigenvectors) as indicated.

Figure S13. Root-mean-square fluctuations (RMSF) of amino acid beads projected along the depicted principal components (PC) as a function of α S residue number.

Table S1. Micelle parameter of SLAS and SDS.^a

Detergent	Radius [Å]	Mass [kDa]	Aggregation number
SLAS ^b	22.2	30.6	104
SDS	18.7	19.0	66

^aIn 25 mM NaH₂PO₄/Na₂HPO₄, pH 7.4, solution. ^bValues taken from Rao et al.²

 Table S2. Coarse-grain topology for SLAS.

SLAS cg.itp

[;	molecu molnar SLA	ile ne	type] nrex 1	cl							
[ð ;	atoms] id 1 2 3 4 5	tyn Qa Na C2 C1 C1	pe	resr 1 1 1 1 1	ır	residu SLA SLA SLA SLA SLA	ato COO NCO C1 C2 C3	m)	cgnr 1 2 3 4 5	ch	harge -1.0 0 0 0 0	
[] ;	oonds] i j 1 2 2 3 3 4 4 5	fur 1 1 1 1	nct	leng 0.47 0.47 0.47	yth 7 7 7	force.c 1250 1250 1250 1250	•					
[a;	angles] i j k 2 3 4 3 4 5]		func 2 2	ct	angle 180.0 180.0	for 25. 25.	ce.c. 0 0				
<u>S</u> 1	LAS CG	.pdl	<u>o</u>									
A' A' A' A' TI EI	FOM FOM FOM FOM FOM ER ND	1 2 3 4 5	COO NCO C1 C2 C3	SLA SLA SLA SLA SLA	1 1 1 1	42. 43. 44. 43. 45.	725 187 103 251 554	52.47 52.53 51.56 48.48 46.30	0 68 3 63 5 59 3 55 7 51	.035 .096 .097 .518 .858	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00

Simulation	No. of water beads / atoms	Total no. of beads / atoms	Box dimension [Å]	Simulation time [ns]
CG (micelle self-assembly) ^{a,c}		L	I
SDS (M1)	2,383	2,713	68×68×68	100
(M2)	2,391	2,721	65×65×65	200
SLAS (M1)	8,630	9,254	100×100×100	200
(M2)	6,086	6,710	80×80×80	300
CG (micelle pre-equilibrat	$(ed)^{b,c}$			
SDS- αS_{NC}^{SDS} (set I)	6,739	7,350	60×240 ×60	300
(set II)	10,295	10,906	70×240×70	200
(set III)	13,210	13,821	80×240×70	150
SLAS- αS_{CN}^{SLAS} (set I)	8,051	8,956	61×88×95	400
(set II)	18,318	19,223	100×120×160	250
(set III)	19,935	20,840	100×140×160	250
SLAS- αS_{NC}^{SLAS} (set I)	10,008	10,913	120×100×100	400
(set II)	10,367	11,272	120×90×100	250
(set III)	12,271	13,176	120×90×110	250

Table S3. Summary of repeated coarse-grained (CG) simulations.

^aM1 and M2 denotes the two micelle simulations of Figure S1.

^bThree sets of α S-micelle CG simulations were performed (Figure 3d-f and Figure S2).

^c264 SDS, 520 SLAS and 272 αS beads were employed.

Table S4. Fine-grain topology for SLAS.

SLAS fg.itp

[moleculetype] ; Name nrexcl SLA 3

[atoms]

;	nr	type	resnr	resid	atom	cgnr	charge	mass
	1	0	1	SLA	0	1	-0.465	15.9994
	2	С	1	SLA	C1	1	0.380	12.0110
	3	MO	1	SLA	MO	1	-0.635	15.9994
	4	CH2	1	SLA	C2	1	0.000	14.0270
	5	Ν	1	SLA	Ν	1	-0.280	14.0067
	6	CH3	1	SLA	C3	2	0.000	15.0350
	7	С	1	SLA	C4	2	0.380	12.0110
	8	0	1	SLA	0	2	-0.380	15.9994
	9	CH2	1	SLA	C5	2	0.000	14.0270
	10	CH2	1	SLA	C6	2	0.000	14.0270
	11	CH2	1	SLA	C7	2	0.000	14.0270
	12	CH2	1	SLA	C8	2	0.000	14.0270
	13	CH2	1	SLA	C9	3	0.000	14.0270
	14	CH2	1	SLA	C10	3	0.000	14.0270
	15	CH2	1	SLA	C11	3	0.000	14.0270
	16	CH2	1	SLA	C12	3	0.000	14.0270
	17	CH2	1	SLA	C13	3	0.000	14.0270
	18	CH2	1	SLA	C14	3	0.000	14.0270
	19	CH3	1	SLA	C15	3	0.000	15.0350

[bonds]

L .		1		
;	ai	aj	fu	c0, c1,
	2	1	2	0.125 13400000.0
	2	3	2	0.125 13400000.0
	2	4	2	0.153 7150000.0
	5	4	2	0.147 8710000.0
	5	6	2	0.147 8710000.0
	5	7	2	0.134 10500000.0
	7	8	2	0.136 10200000.0
	7	9	2	0.153 7150000.0
	9	10	2	0.153 7150000.0
	10	11	2	0.153 7150000.0
	11	12	2	0.153 7150000.0
	12	13	2	0.153 7150000.0
	13	14	2	0.153 7150000.0
	14	15	2	0.153 7150000.0
	15	16	2	0.153 7150000.0
	16	17	2	0.153 7150000.0
	17	18	2	0.153 7150000.0
	18	19	2	0.153 7150000.0
Г	nai	rg l		
L .	pur.		£11	a0 a1

;	ai	aj	±и	с0,	cl,	
	1	5	1			
	2	6	1			
	2	7	1			
	3	5	1			
	4	8	1			
	4	9	1			
	5	10	1			
	6	8	1			

[;	[;	
dih ai 5 7 5 2 9 10 11 12 13 14 15 16 17 18 19	ang ai 1 3 2 4 4 6 5 8 7 9 0 11 2 3 14 15 16 17	6 7 8 9 10 11 12 13 14 15 16
edra aj 1 4 5 4 7 11 12 11 12 13 14 15 16 17 18	les aj 2 2 4 5 5 7 7 9 10 11 2 3 14 15 16 17 18	9 11 10 12 13 14 15 16 17 18 19
ls] ak 3 6 8 2 5 7 9 10 11 12 13 14 15 16 17] ak 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19	1 1 1 1 1 1 1 1 1 1
al 7 9 1 7 4 5 7 9 10 11 12 13 14 15 16	fu 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
fu 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c0 12 11 10 12 12 11 12 11 12 11 10 10 10 10 10 10 10	
c0 18 18	, c 7.07.07.07.07.00 7.0012.000 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.00 7.0012.000 7.0012.000 7.0012.000000000000000000000000000000000	
0, c: 0.0	1, .	
1, m, 167.4 167.4 1.06 1.06 33.52 1.06 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	<pre>770.0 635.0 635.0 520.0 685.0 700.0 635.0 730.0 610.0 610.0 520.0 520.0 520.0 520.0 520.0 520.0 520.0 520.0 520.0 520.0</pre>	

Supplemental References

(1) Kyte, J.; Doolittle, R. F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. *Mol. Biol.* **1982**, *157*, 105.

(2) Rao, J. N.; Kim, Y. E.; Park, L. S.; Ulmer, T. S. Effect of Pseudorepeat Rearrangement on Alpha-Synuclein Misfolding, Vesicle Binding, and Micelle Binding. *J. Mol. Biol.* 2009, *390*, 516-529.
(3) Rzepiela, A. J.; Schafer, L. V.; Goga, N.; Risselada, H. J.; De Vries, A. H.; Marrink, S. J. Software News and Update Reconstruction of Atomistic Details from Coarse-Grained Structures. *J. Comput. Chem.* 2010, *31*, 1333-1343.