Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

Rong Li^{1,8#}, Di-Dong Xie^{1,2,8#}, Jun-hong Dong^{1,8,12#}, Hui Li^{1,3,8}, Kang-shuai Li^{1,6,8}, Jing Su^{1,3,8}, Lai-Zhong Chen⁴, Yun-Fei Xu^{1,6,8}, Hong-Mei Wang^{1,3,8}, Zheng Gong^{1,5,8}, Guo-Ying Cui^{1,8}, Xiao Yu^{1,3,8}, Kai Wang^{3,8},Wei Yao^{3,8}, Tao Xin^{2,8}, Min-Yong Li⁴, Kun-Hong Xiao⁷, Xiao-fei An⁹, Yuqing Huo¹¹, Zhi-gang Xu^{8,10}, Jin-Peng Sun^{1,2,8*}, Qi Pang^{2,8*}

Affiliations:

¹ Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China;

² Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250012, China

³ Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, 250012, China;

⁴ School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
⁵ Weihai campus, Shandong University, Weihai, Shandong, 264209, China;

⁶Oilu Hospital, Shandong University, Jinan, Shandong, 250012, China;

⁷ Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA

⁸ Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, 250012, China.

⁹Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055

¹⁰ Shandong University, School of Life Sciences, Jinan, Shandong, 250021, China

¹¹Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical

College of Georgia, Georgia Regents University, Augusta, GA 30912

¹² Weifang Medical University, Weifang, Shandong, 261042, China

Supplemental-Figure S1: Bar graph and statistical analysis of the relative catalytic activity of STEP active-site mutants for four different substrates, pNPP, the phospho-peptides derived from phospho-ERK2-pT²⁰²pY²⁰⁴ and pp-p38-pT ¹⁸⁰pY¹⁸², and full-length phospho-ERK protein, compared to wild-type STEP.

(*represents P<0.05 compared to each mutant relative catalytic activity for pNPP. # represents P<0.05, ##, P<0.01 compared to wild type catalytic activity for phospho-ERK protein. The data are the average of at least three independent measurements.)

Supplemental Materials and Methods

Molecular cloning and mutagenesis

The coding sequence of human STEP₄₆ (Swiss-Prot entry P54829) was

sub-cloned into the PET15b bacterial expression vector with an N-terminal hexa-histidine purification tag (MGSSHHHHHH), as described previously (Sun *et al.* 2007). The N-terminal deletions were generated by SLIC methods (Li & Elledge 2012). All point mutations of STEP were produced using the QuikChange Site-Directed Mutagenesis Kit (Stratagene,U.S.A). The PAGE-purified oligonucleotide primers used for cloning were obtained from Beijing Genomics Institute (China). All constructs were verified by DNA sequencing.

Protein expression and purification

The N-terminal His-tagged recombinant STEP proteins (wild-type and mutants) were expressed and purified as follows. BL21(DE3) cells were transformed with the expression plasmids and cultured in LB medium with vigorous shaking at 37°C. The culture temperature was adjusted to 18°C at OD₆₀₀=0.6, and expression was induced for 12 h with 0.4 mM IPTG at an OD_{600} of 0.8. The cells were harvested by centrifugation and re-suspended in lysis buffer (20 mM Tris [pH 8.0], 300 mM NaCl, 1 mM PMSF, and 5 mM imidazole). After centrifugation, the supernatant was incubated with Ni²⁺-NTA resin with end-to-end mixing for 1 hour at 4°C. The beads were collected and washed with 20 ml wash buffer (20 mM Tris [pH 8.0], 300 mM NaCl, and 5 mM imidazole) and eluted with an imidazole gradient (20 mM Tris [pH 8.0], 300 mM NaCl, and 20-200 mM imidazole). The elute was diluted 10-fold in buffer A (20 mM Tris [pH 8.0], 50 mM NaCl, and 2 mM DTT) and loaded onto a 1-ml HiTrap Q FF column. The protein was eluted using a linear gradient from buffer A to 50% buffer B (20 mM Tris [pH 8.0], 1 M NaCl, and 2 mM DTT). The purified proteins were assessed by SDS-PAGE. The proteins were concentrated to 5-10 mg/ml using a 10-kDa cut-off concentrator (Millipore) and stored at -80°C after adjustment with 20% glycerol.

Preparation of phospho-ERK2 protein

Recombinant His-ERK2 and constitutively active MEK1(G7B) were expressed and purified using a procedure similar to that used for His-tagged STEP. Bisphosphorylated ERK2 was prepared and assessed as described previously (Zhao & Zhang 2001). ERK2 (purified, 1 mg/ml) was incubated with 0.1 mg/ml MEK1 in a reaction system of 20 mM HEPES (pH 7.4), 20 mM Mg(OAc)₂, 100 mM NaCl, 2 mM DTT, and 0.5 mM ATP. The reaction was incubated at 30°C for 90 min with occasional stirring. Phosphorylated ERK2 was loaded onto a Superdex-200 column (GE Healthcare) to remove the free ATP and then further purified using a Mono-Q column.

Western blotting

ERK2 (0.5 μ M) was combined with 20 nM phosphatase in 50 mM 3-(N-morpholino)propanesulphonic acid (MOPS), 100 mM NaCl, 0.1 mM EDTA, and 1 mM DTT. The dephosphorylation of phospho-ERK2 by PPM1A was performed by adding 5 mM MnCl₂. Aliquots of the reaction were withdrawn at the indicated times and then added to tubes containing 2X sample loading buffer. The protein samples were then subjected to SDS-PAGE and transferred to nitrocellulose membranes. The membranes were blocked with 5% BSA and incubated with the appropriate dilution of specific antibodies.

Generation of the docking model

The crystal structures of ERK (PDB ID: 2ERK) and STEP (PDB ID: 2CJZ) were combined together in the software programme HEX 6.3. The molecular minimisation was performed similar to the previous docking model of the PPM1A-phospho-ERK complex (Li *et al.* 2013), with 3000 iterations, in the software programme Desmond 3.1.

References

- Li, M. Z. and Elledge, S. J. (2012) SLIC: a method for sequence- and ligation-independent cloning. *Methods Mol Biol*, **852**, 51-59.
- Li, R., Gong, Z., Pan, C. et al. (2013) PPM1A functions as an ERK phosphatase. *The FEBS journal*.
- Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F. and Zhang, Z. Y. (2007) Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. *J Biol Chem*, 282, 29043-29051.
- Zhao, Y. and Zhang, Z. Y. (2001) The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. *The Journal of biological chemistry*, 276, 32382-32391.