Sample ID	Age	Sex	RD phenotype	Sample source	Notes
AHT_D	<2 (2)	М	EORD	Research colony	-
AHT_E	<2 (2)	F	EORD	Research colony	Excluded from GWAS analysis
MLD002	2.7	F	EORD	Family K	Dam:MLD001
MLD021	<<5 (2)	Μ	EORD	Family K	Excluded from GWAS analysis, Dam:MLD001
MLD027	1	F	EORD	Japanese pet	WGA_PCR
MLD028	1.5	F	EORD	Japanese pet	-
MLD029	1.3	М	EORD	Japanese pet	-
MLD030	1.8	F	EORD	Japanese pet	-
MLD031	1.8	М	EORD	Japanese pet	-
MLD032	3	F	EORD	Japanese pet	-
MLD033	3	F	EORD	Japanese pet	-
MI D034	<2 (2)	М	FORD	Japanese pet	-
MI D035	1.8	F	FORD	Japanese pet	-
MLD037	1	M	FORD	Japanese pet	-
MI D064	<3.4 (3.4)	M	FORD	Japanese pet	-
ML D066	2	F	FORD	Japanese pet	_
	3	F	FORD	Japanese pet	WGA PCR
	15	F	FORD	lananese net	-
	0.7	M	FORD	lananese net	
	1	M	EORD	Japanese pet	
	2		EORD	Japanese pet	
	2	I M	EORD	Japanese pet	
	2 -2 5 (2 5)			Japanese per	WGA_F29
	<2.5 (2.5) 1 A	- -		Japanese per	-
	1.4	г с		Japanese per	
	2.5	г г		Japanese pet	WGA_F29
	(0.3)			Japanese pet	-
	<3.3 (3.3)			Japanese pet	-
	I (A E (Q)	г г		Japanese pet	-
	<<4.5 (Z)			Japanese pet	-
MLD222	2.5-5 (5)			Japanese per	-
	2.0	M		Japanese per	-
	2.9			Japanese pet	- Dom:MI D452
MLD004	3	<u>г</u>		Sapanese per	Evoluted from analysis, Dam:MI D002
	2.4-5.2 (5.2) 5	M	MORD	Lananasa nat	Excluded from analysis, Dam.MED002
MLD025	1	M	MORD	Japanese pet	
		M	MORD	Japanese pet	
	9.2-10.6			Sapanese per	Evoluded from CWAS applycic
NLDOOT	(10.6)	Г	LORD	Family K	Excluded from GWAS analysis
MLD003	7.8-9.3 (9.3)	F	LORD	Family K	Excluded from GWAS analysis, Dam:MLD002
MLD005	>10.8 (10.8)	М	LORD	Family K	Excluded from GWAS analysis, Dam:MLD001
MLD007	9.4	М	LORD	Family K	Excluded from GWAS analysis, Dam:MLD001
MLD009	5.2-6.6 (6.6)	М	LORD	Family K	Excluded from GWAS analysis, Dam:MLD002
MLD022	7	Μ	LORD	Japanese pet	-
MLD024	9	М	LORD	Japanese pet	-
MLD039	7	F	LORD	Japanese pet	-
MLD061	8	F	LORD	Japanese pet	-
MLD103	15	М	LORD	Japanese pet	-
MLD114	8.5	М	LORD	Japanese pet	-
MLD115	9	F	LORD	Japanese pet	-
MLD151	6	М	LORD	Japanese pet	-
MLD291	5.6	М	LORD	Japanese pet	-
MLD435	10	М	LORD	Japanese pet	-

Supplementary Table 1 *RPGRIP1^{-/-}* MLHD samples used in SNP array genotyping

MLD436	9	F	LORD	Japanese pet	-
MLD438	9.8	М	LORD	Japanese pet	-
MLD443	7.8	F	LORD	Japanese pet	-
MLD445	~16 (16)	М	LORD	Japanese pet	-
MLD446	15	F	LORD	Japanese pet	-
MLD006	8.9	Μ	Normal	Family K	Excluded from GWAS analysis, Dam:MLD001
MLD008	5.6	М	Normal	Family K	Excluded from GWAS analysis, Dam:MLD004
MLD010	6.1	F	Normal	Family K	Excluded from GWAS analysis, Dam:MLD004
MLD011	5.2	М	Normal	Family K	Excluded from GWAS analysis, Dam:MLD001
MLD012	5.7	F	Normal	Family K	Excluded from GWAS analysis, Dam:MLD003
MLD087	4.8	F	Normal	Japanese pet	-
MLD102	5	F	Normal	Japanese pet	-
MLD104	6.9	М	Normal	Japanese pet	-
MLD106	10.4	М	Normal	Japanese pet	-
MLD127	8.6	Μ	Normal	Japanese pet	-
MLD130	5.3	F	Normal	Japanese pet	-
MLD132	8.5	М	Normal	Japanese pet	-
MLD134	10	F	Normal	Japanese pet	-
MLD153	10.4	Μ	Normal	Japanese pet	-
MLD201	9.2	F	Normal	Japanese pet	WGA_PCR
MLD214	9.8	F	Normal	Japanese pet	-
MLD219	7	М	Normal	Japanese pet	WGA_PCR
MLD235	9.9	F	Normal	Japanese pet	-
MLD242	12.4	F	Normal	Japanese pet	-
MLD265	5.4	F	Normal	Japanese pet	-
MLD269	4.9	F	Normal	Japanese pet	-
MLD288	9.4	М	Normal	Japanese pet	-
MLD343	7.2	М	Normal	Japanese pet	-
MLD345	6	М	Normal	Japanese pet	-
MLD354	5.3	F	Normal	Japanese pet	-
MLD366	14	F	Normal	Japanese pet	-
MLD369	8	F	Normal	Japanese pet	-
MLD370	10.4	F	Normal	Japanese pet	-
MLD405	10.7	F	Normal	Japanese pet	-
MLD413	6	M	Normal	Japanese pet	-
MLD415	5.5	F	Normal	Japanese pet	-
MLD424	8.8	Μ	Normal	Japanese pet	-
MLD453	9.4	F	Normal	Japanese pet	-
AHT11044	6.3	Μ	Normal	UK pet	-
AHT11056	7.7	F	Normal	UK pet	-
AHT11057	8.8	Μ	Normal	UK pet	-
AHT11058	6.4	F	Normal	UK pet	-
AHT11062	7.7	F	Normal	UK pet	-
AHT11063	5.4	F	Normal	UK pet	-

The ages denote the onset of RD in affected dogs and the timing of last examination in Normal dogs. Where a definite age was unavailable, the value shown in brackets was used in the PLINK analysis. Some samples were prepared by whole genome amplification either by PCR-based (WGA_PCR, GenomePlex®; Sigma-Aldrich) or Phi29 DNA polymerase-based (WGA_F29, illustra GenomiPhi V2; GE Healthcare) methods.

Gene	Featrure	Forward primer sequence (5'>3')	Reverse primer sequence (5'>3')	Nt from LRAT		
				Start	End	
LRAT	Exon 1-2	TGCAGGTGAGGTCCCCG	CTGCTCTTTAGTCGTTTCGAC	-63	823	
	Exon 3	GGTACGTGTGATCCTTCTCAG	CATGTTTTCATCTGAACGAGGG	4706	5389	
	Upstream	ACAGGACAAACGGAAACGTC	GGAGTCGCTGGTGTTAATC	-2759	-2037	
		CCCAAAGTTTACAACCGCTCA	GCCCGATTCGGAGCTAATA	-2091	-1643	
		TCTGCTTTCGATCCGTTTG	CCTGCAAAAGGCGGATTAACG	-1960	-1367	
		ACCCCGAAGCTAGGGAAAT	GGCGAAACGCACCTGGG	-1412	-721	
		CCCAGGTGCGTTTCGCC	CAGCTTCTCCAGCAACAGG	-737	47	
	Intron	CGGAGTGTGGCGATTGCAG	TGTAAGGTGACGGATGTTAGC	716	1630	
		GCCAAGTCTCTGTTTTATTGAGA	CCAAACTGTTACATCATTCAAAGT	1493	2437	
		TGTTGCTGCCTAACACCTCTTGTG	ATCGAGTTTTCAGGACAATGAGAA	2371	3298	
		GCCAAGCACCTTTTCTCATTGTCC	ATGATCCATACCCCTGAGGAAG	3263	4177	
		AGAGGGTAGTCTGGACAAGTT	TGCTGAAGCAAGAACACTTCTCTG	4014	4825	
	Human 3'- UTR	CTAAACTAAACGATTTTCCCCTCGT	AAGTCTAGCTTGTGGCCTAGTTTTT	5350	6198	
	equivalent	AGTGAGCGTTCATGTACTTTTGC	GAGATCGTGAAATTACAACAGGTCA	6134	6866	
		TGCTAGACACTGACCTGTTGTAAT	TCCACTGCCGGTTCATAAAG	6832	7723	
		GCAATGATCAAGTGATGCAAG	GGCTCCCAGATGTAGATGACA	7658	8537	

Supplementary Table 2 Primer sequences for canine LRAT

Supplementary Table 3 Primer sequences for the coding regions of canine MAP9, GUCY1A3, and GUCY1B3

Gene	Exon	Forward primer sequence (5'>3')	Reverse primer sequence (5'>3')					
MAP9	1	CAGACCCGGTCAGAGTTTGAAT	CGTAGTAAAAACCTAGTACTGAAGC					
MAP9	2	TTCTCCTGCCCTAAATACACG	TGACAGGCATCCTTTTACTGC					
MAP9	3	TGCCTAAGTTAGCTGTGTTTTAGAGC	TGCAAGACTGACATGCAACTGG					
MAP9	4	GCATCCTGGTAGTCGTTGAAG	ACAGTGCCGTGATCATTCAATA					
MAP9	5	TTGAGATGCCGGTGAACGTACT	GCTTGGGGTAGGTTGCCCTTAC					
MAP9	6	AGATGAATGTAATTGCTCTCCTTG	GGAGTTTTCCACAGACAGTTCAGA					
MAP9	7	TTGGCCCTAAGCCTAACTGTGA	GGTGTCCCGTGTCTTATCA					
MAP9	8	CCTGCCAACTCCTGAAATAGAGG	CCTTGGTGAATGGGTAACCTTGT					
MAP9	9	TTCTTAACTCATGCTCGTCTTTACG	CTAATGGTGCCGACGTGTTGAT					
MAP9	10-12	TCGTATCTACCTGTCTCCGTCTGT	ACAGATTCCACAAGGCAGCTCT					
MAP9	13	CCCCACATGCAGTCACTTACCA	CAGTCCCCACCAGAGAAACACA					
MAP9	14-15	TGTGCTAGATCACTTAGGGCAAC	TGACTGTTGTCTGTTGGGGAGTG					
MAP9	16	GGAAATTATAACTTGGGTTATCTG	GTTGCTGTCGAAAACACGATGG					
MAP9	17	CTTCAGCAAGCAACCTGATTTG	GATTGTCACGTTAAGTCTGGGACA					
GUCY1A3	1	TTTTCTGGACCAGTGCATAGCGG	CTCGCGTCCACGCTCCACAG					
GUCY1A3	2	TGTGTAGCATTGTGCTCCTGCCA	GGCCAGTCAGGAAGACCTGGA					
GUCY1A3	3	TTGTGGTAGGGACATGTGGAATGC	GCCTTGAAAGTGAGAAAGCACGC					
GUCY1A3	4	GGCTGTCAGCGAGACCACCC	AGCAGCAGTACACGGCGACA					
GUCY1A3	5	TTCTTCCCATCCCCCTAGTTGGC	ATGAGTCAGCTTCCCATGCGGC					
GUCY1A3	6	TGTTACCAGACGTAAAGGGAACT	TTCATTTCTAGTCCTTAACCAAGA					
GUCY1A3	7	GCGTCAGCGTTCCCCTTAGTGA	CCAGGATGCGGCTTGCAGAGA					
GUCY1A3	8	GCCACTCCCTGATGTTGTGCT	ACACAGACGTTTGCCGACTGC					
GUCY1A3	9	TGGTGACCGTGCGAGGTGTG	TCAGCGTGGGGGAAGACAGGA					
GUCY1A3	10	TCTGAGCACATTAGGGCACGCT	TGTGTTGAATTTCGAGTACAGGT					
GUCY1B3	1	CCGTTAAACTGGGGGGGGG	CCGCGTGGACAAACACACACTT					
GUCY1B3	2	TCAGGCATTGCATTGGGCATTAGA	CCTCCACCATCGTGCAGCGT					
GUCY1B3	3	TCCACTTGCACAAAAGTTGGGGAT	GGATGTTCAAGGTGGGCAACCA					
GUCY1B3	4	TCAACGCAACCACCCACTCTCT	TGCTCGTGCAGCACTGTTTTGGT					
GUCY1B3	5	AAGCCTACCCGGACAAGAGGGTA	AGCCAGCCGTCCTAGGGAAAGTT					
GUCY1B3	6	TGCATGGAGCCTCTTTCTCCCT	TTCCACCGCCCCTCAGGCAAATA					
GUCY1B3	7	AGCCCTCGCAAAGGTCTTACCA	ACACTCGCAAACTGATTCAGACAGG					
GUCY1B3	8	ACAGACCAGGTTGCACAGGACA	ACAGGCCCCGTGCCTTTTTAGT					
GUCY1B3	9	ACAGCTTTCCTACTGTGAGGCCA	AACAGTGACTGCGTGGAGGCTGTA					
GUCY1B3	10	GGCAGTGGCTCTTGTGCCGTA	CTTTGCCCTCAAGGTGTCTTTCCT					
GUCY1B3	11	CAGGTTCAAGTAGATGGCGAATCTGT	TGAGAGTTAAACCACACGTAACGACAC					
GUCY1B3	12	AGCAGAACGGAAACCACTGGAGA	TCACAGCCCTCTCGCCTCAGC					
GUCY1B3	13	GTGGCCCTGTTTCACCCAGAAT	AGAGCGCCTAACATTTATCCCAAGC					

Supplementary Fig. 1 SNP genotypes of 83 *RPGRIP1^{-/-}* MLHDs at the CFA15 locus associated with EORD. EORD (red header), MORD (orange header) and LORD (yellow header) samples are shown in the order of the onset age (except individuals with atypical haplotypes), while Normal samples (green header) are shown in the order of the age at examination. SNP alleles in light blue boxes represent the predominant allele in EORD, while those in light yellow boxes represent the alternative allele. The 1.49-Mb region of homozygosity shared by 90% of the EORD cases is outlined in red. The Dog ID of the UK dogs is shown in blue.

Supplementary Fig. 2 Haplotype combinations of the locus associated with EORD. Haplotype blocks were inferred using the controls (M1: 15 LORD + 34 Normal). Haplotype 'a' corresponds to the major haplotype in the EORD cases. Alternative haplotypes (b-g) are indicated in different color blocks where alternative SNP alleles are shown in white letters. Left, four different haplotype pairs in the EORD cases (n=31). Right, haplotype pairs in the controls (n=49) are shown where both haplotype frequencies are ≥ 0.03 . Haplotype frequencies in the controls: a=0.22, b=0.22, c=0.09, d=0.07, e=0.05, f=0.03, g=0.03.

Supplementary Fig. 1

Cases (EORD)			Phenotype	notype Controls (LORD + Normal)														
28	1	1	1	No. of dogs	4	3	3	2	2	2	2	2	2	1	1	1	1	23
a a	bс	а-		Haplotype ID	a b	аa	a d	b b	сс	bс	b d	a f	a e	d d	bg	b f	аg	
ΑΑ	A A	AA	ΑΑ	55.66	AA	ΑΑ	AG	ΑA	ΑΑ	AA	AG	A G	A A	GG	A G	A G	AG	
ТТ	ТТ	ТТ	ΤТ	55.76	ТТ	ΤТ	ТТ	ΤТ	ΤТ	ТТ	ТТ	ТТ	ТТ	ТТ	ТС	ТТ	ТС	
GG	GA	GG	GG	55.86	GG	G G	GA	GG	ΑΑ	GA	GA	GA	G A	ΑΑ	GG	GA	G G	
G G	GG	GG	GG	55.94	GG	G G	GG	GG	GG	GG	G G	GA	GG	GG	GA	GA	GA	w
A A	GG	AG	GG	56.11	AG	A A	AA	GG	GG	GG	GA	A A	A G	A A	G G	GA	AG	be
G G	A G	GA	GG	56.28	GA	G G	GG	A A	GG	A G	A G	GG	GG	GG	A A	A G	GA	fo
GG	GG	GG	GG	56.29	GG	GG	GA	GG	GG	GG	GA	GA	GG	ΑΑ	GG	GA	GG	ap
ТТ	ТС	ТТ	ТС	56.36	ТТ	ΤТ	ТТ	ТТ	СС	TC	ТТ	er h						
СС	ТС	CC	CC	56.38	СТ	CC	CC	ΤТ	СС	ТС	ТС	СТ	СТ	CC	ТТ	ТТ	СТ	-lin
A A	GG	AA	AG	56.46	AG	A A	AA	GG	GG	GG	GA	A A	A A	AA	G G	GA	AG	~
ТТ	GG	TG	ΤG	56.46	TG	ΤТ	TG	GG	GG	GG	GG	ТТ	TG	GG	G G	GT	TG	
A A	A G	AA	AG	56.51	AA	A A	AA	ΑA	GG	A G	AA	A A	A G	AA	A G	AA	AG	
СС	GC	CG	СС	56.62	CG	CC	CG	GG	CC	GC	GG	CG	CG	GG	G G	GG	CG	
				CFA15 (Mb)														

Supplementary Fig. 2