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Precipitation Changes

The different global climate models (GCMs) used in our multi-
model ensemble (MME) experiment show a range of precipitation
patterns (Fig. S1), which will contribute to the spatial distribution
of the MME results.

Global Impact Models

Global impact models (GIMs) vary in the types of processes
represented and the parameterisations used. Table S1 summa-
rizes the main processes included in the GIMs used in the MME.

Masks

The analysis used here is not applicable when the runoff is very
low. We therefore removed particularly arid areas from the
analysis. We defined an arid cell to be one in which the time series
from any emissions-climate-impact model combination (RCPs/
GCMs/GIMs) had zero runoff for more than 90% of the time.
Combining the arid cells from all RCPs/GCMs/GIMs combina-
tions gave us a mask that removed 36% of the total land area from
the analysis (32% of the JULES land area) (9 GIMs, Fig. S2
Right). Of the remaining cells, seasonal variation in total runoff
led us to create a time-varying veto for each land cell and each
RCPs/GCMs/GIMs combination, which discarded calendar days
for which the value of Q90 was zero. For some GIMs, a signifi-
cant number of points were vetoed at various times throughout
the year (Fig. S3). To have sufficient coverage of the globe, we
discarded the two GIMs (LPJmL and MATSIRO) for which the
time-averaged number of vetoed points was greater than 25% for
all climates. We then recalculated the mask with only the seven
remaining GIMs (HO08, JULES, Mac-PDM.09, MPI-HM, PCR-
GLOBWB, VIC, and WBM). With this 7 GIMs mask, we re-
move 18% of the land cells from the analysis (17% of JULES
land cells). See Fig. S2 Left.

Although we could not use LPJmL and MATSIRO data for
analyzing global effects of the changing, we were able to use them
to investigate the effect of CO, processes on the signal, by cal-
culating subglobal GDIs using only the points available through
the full 9 GIMs mask. This is therefore not a global investigation,
but an investigation concentrating on the areas for which we had
sufficient data for LPJmL and MATSIRO. Using HadGEM2-ES
RCP8.5 runs, we demonstrate the effect on the sensitivity of the
analysis to the inclusion of LPJmL and MATSIRO. The mean
change is little affected by the addition of two GIMs, as it is 0.15
for the seven GIM analysis (Table S3) and 0.16 for nine GIMs.
However, the S2N when using seven GIMs is 2.26 (Table S2). If
we include all 9 GIMs, then the S2N decreases to 1.44. This
decrease in sensitivity is probably because the 9 GIMs analysis
considers a much smaller land surface area, due to vetoing of
points in LPJmL and MATSIRO.

Effect of CO,

Sensitivity tests were carried out with JULES and LPJmL to
investigate the physiological and structural effect of increasing
atmospheric CO, on the model. To exclude the effect of CO,,
runs were carried out in which the atmospheric CO, concen-
tration provided as input to JULES and LPJmL was kept con-

1. United Nations Environment Programme (2012) GEO 5 Global Environment Oulook
5: Environment for the Future We Want (United Nations Environment Programme,
Nairobi, Kenya), p 551.
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stant at a near present-day (i.e., year 2000) level throughout the
21st century. (Note that otherwise the GCM output used to force
the model was identical to the standard run.) These sensitivity
runs showed fundamentally different results regarding changes
in global and regional drought frequency, with lower (higher)
drought frequency simulated when the effect of CO, was in-
cluded (excluded) (Fig. S5). A corresponding difference was
seen in the vegetation, with a marked decrease in transpiration
when CO, effects were included in both models, despite an in-
crease in the carbon stored in vegetation (indicating an increase
in vegetation biomass; Fig. S4 Right). Fig. S4 shows the differ-
ence in vegetation carbon and transpiration that can be associ-
ated with the inclusion of physiological and structural effects of
CO; on the vegetation in JULES and LPJmL. The higher veg-
etation carbon seen when CQO, increases to 2100 indicates more
vigorous vegetation growth. Because the corresponding transpi-
ration is lower, despite the increased vegetation, this decrease in
transpiration can be associated with stomatal closure in a CO,-
rich atmosphere.

Fig. S5 demonstrates the sensitivity of JULES to representa-
tions of the effects of CO, on stomatal opening and dynamic
vegetation. It shows the CDFs from HadGEMZ2-ES driven
JULES runs where the CO, concentration was allowed to in-
crease to 2100 (“CO,”) and where it was held constant at the
2000 value (“no CO,”). For each CO, concentration, the vege-
tation was either dynamic, as in the standard JULES runs
(“RCP8.5” in the legend), or fixed at a near-present day land use,
LAI and height (“Fix. Veg.”). Note that a single historical CDF
is shown for clarity. With or without dynamic vegetation, the
runs with constant CO, after year 2000 (“no CO,”) show a large
increase in drought frequency under RCP8.5. With concen-
trations of CO, fixed, the stomata do not partially close as they
do under higher CO,, resulting in large evapotranspiration losses
and increased drought. If we instead allow CO, to increase (and
stomata to close) with fixed vegetation (“CO, Fix. Veg.”), there
is a smaller response because of reduced evaporative loss. Al-
lowing both CO, and dynamic vegetation effects (“CO,”), the
stomata can close and conserve water; and now, where con-
ditions become unfavorable, the vegetation will decline, and,
where conditions are favorable, the vegetation will prosper. The
net effect in these simulations from JULES is that there is little
change in global drought in this case.

Regional Analysis

The regional analysis was conducted on a subset of 17 GEO
subregions defined in ref. 1: North America (NAm); Meso America
(MAm); Caribbean (Car); South America (SAm); Western Europe
(WEu); Central Europe (CEu); Eastern Europe (EEu); Central
Asia (CAs); East Asia and North West Pacific (EAs); South
Asia (SAs); Southeast Asia (SEA); Australia and New Zealand
(ANZ); Western Africa (WAf); Central Africa (CAf); Eastern
Africa (EAf); Southern Africa (SAf); and Western Indian Ocean
(WIO). The results for the regions and for global analysis are
summarized in Table S3 (MME mean change) and Table S2
(Signal-to-Noise Ratio).
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Fig. S1. The time-averaged fraction of unmasked land points used to calculate the GDI for mask calculated from 7 GIMS (Left) and mask calculated from 9
GIMS (Right) after vetoes were applied. The x-axis labels denote the different GCMs: H, HadGEM2-ES; I, IPSL-CM5A-LR; M, MIROC-ESM-CHEM; G, GFDL-ESM2M;
and N, NorESM1-M. The 9 GIMs analysis was carried out using only HadGEM2-ES data. The colors indicate GIMs included in both 7 GIM and 9 GIM analyses
(black), and GIMs included in only the 9 GIMs analysis (cyan). The symbols indicate the models: up triangle, HO8; circle, JULES; x, Mac-PDM.09; +, MPI-HM;
pentagon, PRCGLOB-WB; down triangle, VIC; square, WBM; diamond, LPJmL; star, MATSIRO.
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Fig. S2. Plot of the areas included in the analyses. Red areas were discarded whereas blue areas were retained. Upper Left shows the data included in the
analysis of 7 GIMs for a 0.5° latitude x 0.5° longitude grid: 12,369 cells (18% of the total land area) were discarded; 55,051 cells (82% of the total land area)
were retained. Upper Right shows the data included in the CO, sensitivity analysis for a 0.5° latitude x 0.5° longitude grid: 23,616 cells (36% of the total land
area) were discarded; 43,804 cells (64% of the total land area) were retained (9 GIMs). Lower Left shows the data included in the analysis of 7 GIMs on the
JULES grid: 1,288 cells (17% of the total land area) were discarded; 6,270 cells (83% of the total land area) were retained. Lower Right shows the data included
in the CO, sensitivity analysis for the JULES grid: 2,356 cells (32% of the land area) were discarded; 5,202 cells (68% of the land area) were retained (9 GIMs).
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Fig. S3.

Change in JULES vegetation carbon
Varying CO2 minus constant CO2
T ne T

Percentage change in the occurrence of days under drought conditions for two seasons for the period 2070-2099 relative to 1976-2005, based on
a multimodel ensemble (MME) experiment under RCP8.5 from five global climate models and seven global impact models: MME mean change for December to
February (DJF, Left) and June to August (JJA, Right). See Methods for definition of drought and masking procedure.
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Fig. S4. Maps of the change in vegetation carbon and transpiration associated with the inclusion of effects of increased CO, on vegetation. These plots show
the 2070-2099 average difference between the standard RCP8.5 HadGEM2-ES runs, with increasing CO, levels, and sensitivity runs where atmospheric CO, was
held at a constant (year 2000) value throughout the 21st century. Top Left shows the change in JULES vegetation carbon associated with increasing CO, levels
whereas Top Right shows the associated change in JULES transpiration. Bottom Left shows the change in vegetation carbon associated with increased CO, for
LPJmL whereas Bottom Right shows the change in transpiration. A very similar pattern of increasing vegetation carbon coupled with a decrease in transpi-
ration is seen in both models.
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Fig. 5. Cumulative density functions of GDI for simulations of JULES using HadGEM2-ES forcing and showing the effects of different representations of CO,
and vegetation dynamics. Colors show the representative concentration pathways: black, historical; red, RCP8.5. “CO2"” and “no CO2" are runs with and
without CO, increase after year 2000, with dynamic vegetation. “Fix. Veg. no CO2"” and “Fix Veg. CO2" are runs with fixed vegetation, with and without

variation of CO,.
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Fig. S6. Changes in mean annual precipitation between the reference (1976-2005) and future (2070-2099) time slices, expressed as a percentage of the reference

amount, as simulated by HadGEM2-ES (A), IPSL-CM5A-LR (B), MIROC-ESM-CHEM (C), GFDL-ESM2M (D), and NorESM1-M (E), and the ensemble mean (F).
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Table S1. Main characteristics of the Global Impact Models used in this study, after ref. 1

Time step Meteorological Energy Evaporation Vegetation CO,
Model name length forcing* balance scheme’ Runoff scheme* Snow scheme  dynamics effect® Refs.
HO8 Daily R, S, T,W,Q, LW, Yes  Bulk formula Saturation excess, Energy balance No No 2)
SW, SP nonlinear
JULES 30 min R,S, T, W, Q, LW, Yes  Penman-Monteith (3) Infiltration excess, Energy balance Yes' VaryingH (4, 5)
SW, SP saturation excess,
groundwater.
LPJmL Daily P, T, LW,, SW No Priestley-Taylor (6) Saturation excess  Degree-day Yes VaryingH (7, 8)
MPI-HM Daily P, T, W, Q, LW, No Penman-Monteith (3) Saturation excess, Degree-day No No (9, 10)
SW, SP nonlinear
Mac-PDM.09 Daily P, T, W, Q, LW, No Penman-Monteith (3) Saturation excess, Degree-day No No (11, 12)
SW, SP nonlinear
MATSIRO 1h R, S, T, W, Q, LW, Yes  Bulk formula Infiltration excess, Energy balance No Constant  (13)
SW, SP saturation excess, (345 ppm)
groundwater.
PCRGlobWB Daily P, T No Hamon (14) Infiltration excess, Degree-day No No (15-17)
saturation excess,
groundwater
VIC Daily, P, Tmax Tmin W,  Only for Penman-Monteith (3) Saturation excess, Energy balance. No No (18)
3 h snow RH, LW, SW, SP. snow nonlinear
WBM Daily P, T No Hamon (14) Saturation excess Empirical temp No No (19-22)
and precip

based formula

*LW, downwelling longwave radiation; LW,, net longwave radiation; P, precipitation rate (rain and snow calculated in the model); Q, air specific humidity; R,
rainfall rate; RH, relative humidity; S, snowfall rate; SP, surface pressure; SW, downwelling shortwave radiation; T, air temperature; Tpay, daily maximum air
temperature; Tp,in, daily minimum air temperature; W, wind speed.

"Bulk formula: Bulk transfer coefficients are used when calculating turbulent heat fluxes.

*Nonlinear: Subsurface runoff is a nonlinear function of soil moisture.

8CO, concentration in calculation of stomatal conductance.

YVegetation dynamics were switched off in sensitivity experiments.

llco, variation was switched off in sensitivity experiments.

. Haddeland |, et al. (2011) Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology 12(5):869-884.
. Hanasaki N, et al. (2008) An integrated model for the assessment of global water resources — Part 1: Model description and input meteorological forcing. Hydrol Earth Syst Sci 12(4):
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