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Table S1: GGCM models contributing the present analysis along with 
the primary contact for this work and institutional affiliation. 

Crop model Institution # crops  Contact 

pDSSAT University of Chicago 4 Joshua Elliott 

PEGASUS University of East 
Anglia 

3 Delphine Deryng 

GEPIC EAWAG 4 Christian Folberth 

LPJmL PIK 13 Christoph Müller 

LPJ-GUESS Lunds University 4 Stefan Olin 

EPIC Boku/ IIASA 15 Erwin Schmid 

 

 

 

 

 

 

Parameterizations of irrigation event algorithms  

Most of the models participating use a method that can be summarized in terms of 4 parameters:  

1. IMDEP: depth of soil moisture considered  
2. ITHRL: critical lower soil moisture threshold to trigger irrigation event 
3. ITHRU: upper soil moisture threshold to stop irrigation 
4. IREFF: irrigation application efficiency 

EPIC-type models use the following parameterization  

1. BIR: water stress in crop to trigger automatic irrigation 
2. EFI: irrigation efficiency - runoff from irrigation water 
3. VIMX: maximum of annual irrigation volume 
4. ARMX: maximum of single irrigation volume allowed 
5. ARMN: minimum of single irrigation volume allowed  

 

Table S2: GHM models contributing the present analysis along with the 
primary contact for this work and institutional affiliation. 

Water model Institution PIrrUse? Contact 

LPJmL PIK Yes Dieter Gerten/ 
Markus Konzman 

VIC Norwegian Water 
Resources and Energy 
Directorate 

Yes Ingjerd 
Haddeland 

H08 National Institute for 
Environmental Studies 
Japan 

Yes Yoshimitsu 
Masaki 

WaterGAP Kassel University Yes Martina Flörke 

MacPDM University of Reading/  
University of Nottingham 

No Simon N. Gosling 

WBM CUNY Yes Balazs Fekete 

MPI-HM Max-Plank-Inst. For 
Meteorology 

Yes Tobias Stacke 

PCR-GLOBWB Utrecht University Yes Yoshihide Wada 

DBH IGSNRR, China No Qihuong Tang 

MATSIRO University of Tokyo No Yusuke Satoh 



 

Table S3: Irrigation parameters for GGCMs. 

Model IMDEP (cm) ITHRL (%) ITHRU (%) IREFF (%) 

pDSSAT  40 80 100 75 

pDSSAT (rice) 30 50 100 100 

LPJmL 300
1
 90 100 Varies

2
 

PEGASUS 40 90 100 100 

LPJ-GUESS 200
1
 90 100 100 

 

 

Estimating global PIrrUse from for all crops from GGCM outputs 

For this analysis we consider 16 of the most important global crop types (including grass/pasture). Because of the extreme 

diversity of global agriculture however, it is not possible to include all crops that are important for irrigation in all regions. In 

total, the 16 crops simulated by at least one global crop model account for 85.5% of the global irrigated areas recorded in 

MIRCA2000. For the remaining crop-types, which are dominated by the general categories “Others annual” and “Others 

perennial,” we assume areas equipped for irrigation demand irrigation according to the median irrigation demand among 

the seven simulated crops that constitute the highest total fraction of global irrigation (Fig. S1). Table S5 shows a detailed 

breakdown of the crops simulated, the number of models used to simulate each, and the fraction of global irrigated area in 

all MIRCA land-cover types (simulated or not).  
 

 

 

                                                           
1
 LPJ-type models use a root-access weighted mean soil moisture down to a depth of 3m.  

2
 LPJmL uses country specific values for IREFF, ranging between 29.4% (e.g. Mexico, Pakistan, etc.) and 85.5% (e.g. Israel, Jordan etc.). 

These consist of a conveyance efficiency (transporting to the field) and a field application efficiency [cite http://www.pik-
potsdam.de/research/publications/pikreports/summary-report-no-104]. 

Table S4: Irrigation parameters for EPIC-based GGCMs. 

Model BIR (%) EFI (%) VIMX  
(mm) 

ARMX 
(mm) 

ARMN 
(mm) 

EPIC 90 100 500 50 20 

GEPIC 90 100 2000 1000 0.01 

Table S5: Fraction of global irrigated area (according to MIRCA 2000) 
in each of the simulated (by at least one global crop model) and 
non-simulated crop-types represented in MIRCA.  

Simulated  (# GGCMs) Not simulated 

Rice 0.247 (5) Other annual 0.061 

Wheat 0.227 (6) Other perennial 0.049 

Maize 0.115 (6) Potatoes 0.014 

Cotton 0.062 (1) Citrus 0.013 

Fodder grasses 0.045 (2) Vine 0.006 

Sugar cane 0.039 (2) Date palm 0.003 

Soybeans 0.023 (6) Rye 0.001 

Pulses* 0.021 (2) Coffee 0.001 

Barley 0.017 (1) Cocoa 0 

Peanuts 0.014 (2) Oil palm 0 

Canola 0.013 (2) 

  Sorghum 0.013 (1) 

  Millet 0.007 (2) 

  Sugar beet 0.006 (1) 

  Sunflower 0.005 (2) 

  Cassava 0 (2) 

  * LPJmL simulates ‘field pea’ and EPIC simulates ‘dry bean’; here we 
consider these both as representing general legumes 

 

 



 

 

 
Figure S1: Global PIrrUse from 1971-2099 for the top 6 irrigated annual crops and perennial grasses. All six GGCMs are shown for HadGEM2-ES, 

RCP 8.5. 

 
Figure S2:  Partial reproduction of Figure 1 with results shown explicitly for each model type in the ensemble. Points to the left of 

each bar are results for each impact model (GHM or GGCM) averaged over all 5 GCMs. Points to the right of each bar are results 

for each GCM averaged over all impact models (GHM or GGCM). Variability in PIrrUse among GHMs is about twice as large as 

variability among GCMs, where the variability in estimates of PIrrUse from is comparable between GCMs and GGCMs.  



 
Figure S3: Map of 309 global food producing units (FPUs),  composites of river basins and economic regions following Cai and Rosegrant 

(2002) with modifications by Kummu et al. (2010).  

 
Fig S4: Global total blue water runoff from 11 water models averaged over all GCMs/ RCP8.5.  

 

 
Figure S5: Left: end-of-century (2070-2099) renewable water available for human use (median of all GCM × GHM combinations) assuming 40% 

of available blue water runoff is potentially extractable for human use. Right: end-of-century demand for water for non-agricultural human 

uses, including domestic, industrial, energy generation, and livestock sector water demand under SSP2, as estimated by WaterGAP. 

 



 

 

 

 

Fig S6: Total PIrrUse for each FPU for the median of all 30 GCM × GGCM combinations over the historical period, 1980-2010.  

 

 

Fig S7: Total PIrrUse for each FPU for the median of all 35 GCM × GHM combinations over the historical period, 1980-2010.  

 


