
Supporting Information
Piatkov et al. 10.1073/pnas.1401639111
SI Text
Detailed (Extended) Legend to Fig. 1. The N-end rule pathway.
The main determinant of an N-degron is a destabilizing

N-terminal residue of a protein. N-terminal residues are indicated
by single-letter abbreviations for amino acids. A yellow oval denotes
the rest of a protein substrate. Recognition components of the
N-end rule pathway are called N-recognins.
Regulated degradation of proteins or their fragments by the

N-end rule pathwaymediates a strikingly broad range of biological
functions, including the sensing of heme, nitric oxide, oxygen, and
short peptides; the control, through subunit-selective degradation,
of the input stoichiometries of subunits in oligomeric protein
complexes; the elimination of misfolded or otherwise abnormal
proteins; the degradation of specific proteins after their retro-
translocation to the cytosol frommitochondria or other membrane-
enclosed compartments; the repression of apoptosis and neuro-
degeneration; the regulation of chromosome transcription, repair,
replication, and cohesion/segregation; the regulation of G proteins,
autophagy, peptide import, meiosis, immunity, fat metabolism, cell
migration, actin filaments, cardiovascular development, sper-
matogenesis, neurogenesis, andmemory; and the regulation ofmany
processes in plants (1–59). In eukaryotes, the N-end rule pathway
consists of two branches (A and B).
Part A. The Arg/N-end rule pathway: the prefix Arg in the path-
way’s name refers to N-terminal arginylation (Nt-arginylation) of
N-end rule substrates, a significant feature of this system. The
Arg/N-end rule pathway targets specific unacetylated N-terminal
residues. In the yeast S. cerevisiae, the Arg/N-end rule pathway is
mediated by the Ubr1 N-recognin, a 225-kDa RING-type E3 Ub
ligase and a part of the targeting apparatus comprising a complex
of the Ubr1-Rad6 and Ufd4-Ubc4/5 holoenzymes (1, 4, 9). In
multicellular eukaryotes, several functionally overlapping E3 Ub
ligases (Ubr1, Ubr2, Ubr4, and Ubr5) function as N-recognins of
this pathway. An N-recognin binds to the primary destabilizing
N-terminal residues Arg, Lys, His, Leu, Phe, Tyr, Trp, and Ile. In
contrast, the N-terminal Asn, Gln, Asp, and Glu residues (as
well as Cys under some metabolic conditions) are destabilizing
owing to their preliminary enzymatic modifications. These
modifications include the Nt-deamidation of N-terminal Asn and
Gln by the Ntan1 and Ntaq1 Nt-amidases, respectively, and the
Nt-arginylation of N-terminal Asp and Glu by the Ate1 argi-
nyltransferase (R-transferase), which can also Nt-arginylate oxi-
dized Cys, either Cys-sulfinate or Cys-sulfonate. These derivatives
of N-terminal Cys can form through oxidation of Cys by NO and
oxygen, as has been shown by studies with Cys-based physiolog-
ical N-end rule substrates in animal and plant cells. In addition to
its type 1 and type 2 binding sites that recognize, respectively, the
basic and bulky hydrophobic destabilizing N-terminal residues, an
N-recognin such as Ubr1 contains other substrate-binding sites as
well. These sites recognize substrates that are targeted through
their internal (non–N-terminal) degrons, as indicated on the di-
agram (1). Hemin (Fe3+-heme) binds to the Ate1 R-transferase,
inhibits its Nt-arginylation activity, and accelerates its in vivo
degradation. Hemin also binds to Ubr1 (and apparently to other
N-recognins as well) and alters its functional properties, in ways
that remain to be understood (13). It was recently shown that
both yeast and mammalian Ubr1 can recognize not only the
unacetylated primary destabilizing N-terminal residues cited
above, but also the unacetylated N-terminal Met residue, if it is
followed by a hydrophobic residue. This capability of the Arg/N-end
rule pathway greatly expands the range of its substrates, as virtually
all nascent proteins bear N-terminal Met (59). This aspect of the

Arg/N-end rule pathway is not depicted in the diagram, as it has
been characterized thus far only in Saccharomyces cerevisiae (59).
Part B. The Ac/N-end rule pathway: The diagram illustrates the
mammalian Ac/N-end rule pathway through extrapolation from
its S. cerevisiae version. [Although it is virtually certain that this
pathway is present in all eukaryotes (1), it has been characterized
thus far only in S. cerevisiae (59–61)]. Red arrow on the left in-
dicates the removal of N-terminal Met by Met-aminopeptidases
(MetAPs). N-terminal Met is retained if a residue at position 2 is
nonpermissive (too large) for MetAPs. If the retained N-termi-
nal Met or N-terminal Ala, Ser, and Thr are followed by acety-
lation-permissive residues, the above N-terminal residues are
Nt-acetylated by ribosome-associated Nt-acetylases (62–64).
Nt-terminal Val and Cys are Nt-acetylated relatively rarely,
whereas N-terminal Pro and Gly are almost never Nt-acetylated.
N-degrons of the Ac/N-end rule pathway are called Ac/N-degrons
to distinguish them from other N-degrons (1). The term secondary
refers to the Nt-acetylation of a destabilizing N-terminal residue
before a protein can be recognized by a cognate N-recognin.
Natural Ac/N-degrons are regulated by their reversible steric
shielding in protein complexes (59, 60).

Detailed (Extended) Legend to Fig. 2. Calpain-generated C-terminal
fragments of mammalian proteins that are either identified or
predicted substrates of the Arg/N-end rule pathway.
The entries whose numbers are colored in green are the ex-

perimentally identified (most of them in the present study)
substrates of the Arg/N-end rule pathway. The entries whose
numbers are colored in black are predicted Arg/N-end rule
substrates. Each entry cites a calpain-generated C-terminal (Ct)
fragment of a protein and the fragment’s N-terminal residue (in
red, using three-letter abbreviations for amino acids), followed
by a description of uncleaved (full-length) precursor protein. A
calpain cleavage site, denoted by an arrowhead, uses single-letter
abbreviations for amino acids. An enlarged P1′ residue (in red)
becomes N-terminal upon the cleavage. The indicated residue
numbers are the number of the first shown residue of a full-
length protein and the number of its last residue, respectively.
All entries are mouse proteins, with the exception of #14 and
#27, which are human proteins. #1: Glu-Bak is the proapoptotic
Ct fragment of the apoptotic regulator BAK. Glu-BAK is gen-
erated by calpain-1 in vitro and is apparently formed in vivo as
well (65) (Figs. 3A and 5 E and F). #2: Arg-Bid. Bid is a 22-kDa
member of the BCL-2 family of apoptosis regulators (66–68).
Although full-length Bid is a proapoptotic factor, its C-terminal
fragments, which can be naturally produced by activated cas-
pases, calpains or granzyme B, can be even more active than
intact Bid as proapoptotic proteins (69). The cleavage of Bid by
calpains produces the 14-kDa Arg71-Bid fragment (69–72) that has
been shown by us to be a short-lived substrate of the Arg/N-end
rule pathway (23). #3: Asp-BclXL. BclXL is a 26-kDa antiapoptotic
regulatory protein (66, 73). Under conditions that include glucose
and oxygen deprivation, BclXL can be cleaved by activated calpain-
1, resulting in the 21-kDa Asp61-BclXL fragment. In contrast to
full-length BclXL, the Asp61-BclXL fragment has proapoptotic ac-
tivity (74) and has been shown by us to be a short-lived substrate of
the Arg/N-end rule pathway (23). #4: Arg-c-Fos is the Ct fragment
of the c-Fos transcriptional regulator. c-Fos is targeted for con-
ditional degradation through more than one degron, including the
path that includes the cleavage by calpains (75) (Fig. S1A and Fig.
5 K and L). #5: Glu-IκBα is the Ct fragment of the IκBα subunit
of the NFκB-IκBα complex in which the NFκB transcriptional
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regulator is inhibited by IκBα. The IκBα subunit is targeted for
degradation either through a conditional phosphodegron or
through a specific calpain-mediated cleavage (76) (Figs. 3C and 5
I and J). #6: Arg-Igfbp2 is the calpain-generated Ct fragment of
the insulin-like growth factor binding protein-2 (77) (Fig. S1C and
Fig. 5 G and H). #7: Asp-Capns1 is the Ct fragment of the calpain
regulatory subunit that is cleaved by activated calpains (78, 79)
(Figs. 3F and 5 A and B). #8: Arg-Atp2b2 is the Ct fragment of the
transmembrane Atp2b2 plasma membrane Ca2+ pump (PMCA)
that ejects Ca2+ from cells. This pump is activated either by the
binding of Ca2+/calmodulin or by the calpain-mediated truncation
of Atp2b2 that generates the Lys-Atp2b2 fragment and thereby
activates the pump (80) (Fig. S1E and Fig. 4 J and K). #9: Leu-
Capn1 is the natural autogenerated, catalytically active Ct frag-
ment of calpain-1 (81, 82) (Fig. S1B and Fig. 5 C and D). #10: Arg-
Ankrd2. Ankrd2 (Marp2, Arpp), a member of the MARP (muscle
ankyrin repeat protein) family, functions as a negative regulator of
muscle differentiation (83). Calpains can produce the 30-kDa
Arg103-Ankrd2 fragment (84) (Figs. 3E and 4 F and G). #11: Tyr-
Grm1. Grm1 is the Ct fragment of the mGluR1α transmembrane
metabotropic glutamate receptor (85). Receptors containing the
calpain-truncated mGluR1α subunit could elevate cytosolic Ca2+

but could not activate PI3K-Akt signaling pathways, in contrast to
uncleaved receptors (85, 86) (Figs. 3B and 4 H and I). #12: Lys-
Ica512. Ica512 (Ptprn) is a member of the transmembrane receptor
protein phosphatase family (87). The 43-kDa calpain-generated
mouse Lys609-Ica512 fragment enters the nucleus and acts as
a transcriptional regulator (87, 88) (Fig. S1D and Fig. 4 D and E).
#13: Phe-GluN2a. GluN2a (NMDA-R2a) is a subunit of the
NMDA receptor (NMDAR), a glutamate receptor that can func-
tion as a ligand-gated Ca2+ channel (89, 90). The GluN2b subunit
of NMDAR can also be cleaved by calpains (91). Ct fragments of
NR2A and NR2B contain domains required for the association of
these subunits with other synaptic proteins. NMDAR receptors
lacking the Ct region of GluN2a could function as glutamate-gated
Ca2+ channels but the intracellular traffic of cleaved receptors, and
their electrophysiological properties were altered (92) (Figs. 3D
and 4 B and C). #14: Asn-DSCR1 (Rcan1) is the calpain-gener-
ated Ct fragment of the Down syndrome critical region 1 protein
Dscr1, which binds to Raf1, inhibits the phosphatase activity of
calcineurin, and enhances its degradation. The Asn-DSCR1 frag-
ment does not bind to the Raf1 kinase (93). #15: Arg-Glyt1a is the
Ct fragment of the transmembrane Glyt1a glycine transporter (94).
Another Gly transporter, Glyt1b, is also cleaved by calpains,
yielding the Arg-Glyt1b fragment (94). These Ct fragments are still
active as transporters but are impaired in their ability to remove
Gly (an inhibitory neurotransmitter) from synaptic clefts (94). #16:
Asn-Cav1.1 is the Ct fragment of the voltage-gated transmem-
brane Ca2+ channel. This (apparently) calpain-generated fragment
is noncovalently associated with the rest of the channel and can
inhibit its activity. Upon dissociation from the channel, the Asn-
Cav1.1 fragment enters the nucleus and functions as a transcrip-
tional regulator (95–98). #17: Lys-cortactin is the Ct fragment of
cortactin, an actin-binding protein that regulates actin polymeri-
zation (99). #18: Asn-Bfl-1. Bfl-1 is antiapoptotic regulatory protein
whose cleavage by calpain-1 generates the Asn72-Bfl-1 Ct proa-
poptotic fragment (100). #19: Arg-dystrophin is the calpain-gener-
ated Ct fragment of a major cytoskeletal protein in the skeletal
muscle (101). #20: Gln-Ryr1 is the Ct fragment of the Ryr1 rya-
nodine receptor, a Ca2+ channel in the ER (102) that mediates the
efflux of Ca2+ from the ER into the cytosol. Calpain-mediated
cleavage of Ryr1 increases Ca2+ efflux (103). #21: Arg-Mef2d is the
Ct fragment of the Mef2d myocyte enhancer factor 2d, a tran-
scriptional regulator that contributes to neuronal survival, de-
velopment, and synaptic plasticity (104). #22: Gln-talin is the
calpain-generated Ct fragment of talin, an adaptor protein that
interacts with the integrin family of cell adhesion transmembrane
proteins (80, 105, 106). #23: Arg-p39 is the calpain-generated Ct

fragment of the p39 activator of the Cdk5 protein kinase (107).
The indicated cleavage site is located immediately downstream
of two other closely spaced (and strongly conserved) calpain
cleavage sites in p39. A cleavage at any one of these sites yields
a predicted Arg/N-end rule substrate. #24: Gln-Egfr is one of
calpain-generated Ct fragments of the transmembrane epidermal
growth factor (EGF) receptor protein kinase (108). Remarkably,
all seven calpain cleavage sites in the cytosol-exposed domain of
the 170-kDa EGFR contain P1′ residues that are destabilizing in
the Arg/N-end rule (108). #25: Leu-β-catenin is the calpain-gen-
erated Ct-fragment of β-catenin, a conditionally short-lived cyto-
skeletal protein and transcriptional regulator. The Leu-β-catenin
fragment is a nuclear protein that activates specific genes in con-
junction with other transcription factors (109). #26: Leu-NF2 is the
calpain-generated Ct fragment of NF2 (merlin), a tumor suppres-
sor and cytoskeletal protein. Loss of function NF2 mutants result in
autosomal-dominant neurofibromatosis, a predisposition to specific
kinds of brain tumors (110). #27: Arg-caspase-9 is the Ct fragment
of caspase-9, which can be inactivated by calpains (111), followed
by the (predicted) degradation of the Arg-caspase-9 fragment by
the Arg/N-end rule pathway. #28: Leu-troponin T2 is the Ct
fragment of the cardiac troponin T that is produced by calpain-1 in
the troponin-containing cardiac myofibril complex (112). #29: Lys-
PKCα is the calpain-generated Ct fragment of PKCα, a broadly
expressed Ser/Thr kinase of the PKC family (113). Being catalyti-
cally active but no longer controlled by the regulatory Nt domain of
the full-length PKCα, the Lys-PKCα fragment can be toxic, for
example, upon its formation in an ischemic heart (114). #30:
Leu-Rad21 is the calpain-generated Ct-fragment of the Scc1/
Rad21 subunit of the chromosome-associated cohesin complex
(115). The calpain-mediated generation of Leu-Rad21 con-
tributes to the control of chromosome cohesion/segregation,
together with processes that include the separase-mediated
cleavage of the same Rad21 subunit (32, 115–117). #31: Phe-
PKCγ is the calpain-generated Ct fragment of PKCγ, a Ser/Thr
kinase of the PKC family (113). The Phe-PKCγ fragment is con-
stitutively active as a kinase, because it lacks the regulatory Nt
domain of the full-length PKCγ kinase (113). #32: Leu-STEP33 is
the Ct fragment of the striatal-enriched STEP61 phosphatase,
a brain-specific Tyr-phosphatase whose substrates include the
MAPK-family kinases ERK1/2 and p38. The calpain-generated
Leu-STEP33 fragment lacks phosphatase activity (118). #33: Leu-
Camk-IV is the calpain-generated Ct fragment of the Ca2+/cal-
modulin-dependent kinase-IV. This fragment lacks kinase activity
(119). #34: Leu-vimentin is the calpain-generated Ct fragment of
vimentin, a component of intermediate filaments (120).

SI Materials and Methods
Miscellaneous Reagents. Cycloheximide and calcium ionophore
A23187 were from Sigma. Calpain inhibitor carbobenzoxy-
valinyl-phenylalaninal (zVF) was from Calbiochem. Mouse and
human cDNAs encoding proteins examined in the present work
were from OpenBiosystems. Anti-flag M2 Magnetic Beads
(M8823; Sigma) were used for immunoprecipitation. Immu-
noblotting was carried out using the anti-flag monoclonal
mouse M2 antibody (Sigma), the HRP-conjugated goat anti-
mouse antibody (#170–6516; BioRad), and ECL Prime Western
Blotting Detection System (GE Healthcare), according to the
manufacturers’ protocols.

Plasmids, cDNAs, and Primers. Turbo Escherichia coli [New England
Biolabs (NEB)] was used for cloning and maintaining plasmids.
Phusion High-Fidelity DNA polymerase (NEB) was used for PCR.
All constructed plasmids were verified by DNA sequencing.
In some Ub reference technique (URT)-based assays, a test

protein migrated, upon SDS/PAGE, too close to the standard
DHFR-Ub reference moiety (Fig. 4A). Therefore, a larger version
of the reference moiety was constructed for such cases (Fig. 5 I

Piatkov et al. www.pnas.org/cgi/content/short/1401639111 2 of 11

www.pnas.org/cgi/content/short/1401639111


and K), through an extension of DHFR-Ub with an N-terminal
region of the E. coli β-galactosidase (βgal; residues 25–119). A
DNA fragment encoding this region of βgal was amplified using
the plasmid pKP55-M (Table S1) as a template and primers 1605
and 1606 (Table S2). The resulting fragment was digested with
HindIII and BamHI, and cloned into HindIII/BamHI-cut pKP496,
yielding pKP582. It contained a region encoding the N-terminal
flag tag and fβgal-DHFR-UbR48, followed by the multiple cloning
site (MCS) SacII-EcoRI-XhoI-ClaI-EcoRV. The pKP582 plasmid
was a precursor of some plasmids encoding specific URT-based
protein fusions (Table S1).
GluN2a. The mouse GluN2a ORF was amplified from a mouse
brain cDNA library using primers 1585 and 1587 for Phe1279-
GluN2a or 1586 and 1587 for Val1279-GluN2a (Table S2). The
resulting DNA fragments were cut with SacII and ClaI and
cloned into SacII/ClaI-cut pKP496 (Table S1), yielding pKP568
and pKP569, respectively.
Ica512. The mouse Ica512 ORF was amplified using cDNA from
OpenBiosystems (ID: 4987532) and primers 1591, 1593, 1597,
and 1598 for the Lys611-Ica512 protein fragment or 1592, 1593,
1597, and 1598 for the Val611-Ica512 fragment (Table S2). The
resulting DNA fragments were cut with SacII and ClaI and
cloned into SacII/ClaI-cut pKP496, yielding pKP574 and pKP575,
respectively. Full-length mouse Ica512 bearing both N-terminal
and C-terminal flag tags and an alternative junctional residue
(Val) at the calpain cleavage site (they were termed fIca512f and
fIca512f-K609V, respectively) was produced as follows: the 5′
region of the Ica512 ORF was amplified from the above mouse
cDNA library using primers 1632–1637 for WT fIca512f, or pri-
mers 1632–1636 and 1638 for the mutant fIca512f -K609V full-
length protein (Table S2). The resulting DNA fragments were cut
with HindIII and AfeI and were cloned into HindIII/AfeI-cut
pKP574, yielding pKP599 and pKP600, respectively (Table S1).
Ankrd2. The mouse Ankrd2 ORF was amplified using cDNA from
OpenBiosystems (ID: 8861782) and primers 1570 and 1572 for
the Arg103-Ankrd2 fragment or 1571 and 1572 for the Val103-
Ankrd2 fragment. The resulting DNA fragments were cut with
SacII and ClaI and cloned into SacII/ClaI-cut pKP496, yielding
pKP576 and pKP577, respectively (Table S1).
Grm1. The mouse Grm1 ORF was amplified using cDNA from
OpenBiosystems (ID: 30544252) and primers 1579 and 1581 for the
Tyr937-GRM1 fragment or 1580 and 1581 for the Val937-GRM1
fragment. The resulting DNA fragments were cut with SacII and
ClaI and cloned into SacII/ClaI-cut pKP496, yielding pKP564 and
pKP565, respectively (Table S1).
Atp2b2. The mouse Atp2B2 ORF was amplified from the above
mouse cDNA library using primers 757 and 759 for the Arg1091-
Atp2b2 fragment or 758 and 759 for the Val1091-ATP2B2 frag-
ment. The resulting DNA fragments were cut with SacII and
EcoRV and cloned into SacII/ EcoRV-cut pKP496, yielding
pJO386 and pJO387, respectively (Table S1).
Capns1. The mouse Capns1 ORF was amplified from the above
mouse cDNA library using primers 1576 and 1578 for the Asp142-
CAPNS1 fragment or 1577 and 1578 for the Val142-Capns1
fragment. The resulting DNA fragments were cut with SacII and
ClaI and cloned into SacII/ClaI-cut pKP496, yielding pKP578 and
pKP579, respectively (Table S1).
Capn1. The human Capn1 ORF was amplified using cDNA from
OpenBiosystems (ID: 5223130) and primers 1510, 1512, 1513, and
1490 for the Leu28-Capn1 fragment or 1511, 1512, 1513, and 1490
for the Val28-Capn1 fragment. The resulting DNA fragments were
cut with SacII and ClaI and cloned into SacII/ClaI-cut pKP496,
yielding pKP536 and pKP537, respectively (Table S1).
Bak. The mouse Bak ORF was amplified from the above mouse
cDNA library using primers 1610 and 1612 for the Glu16-Bak
fragment or 1611 and 1612 for the Val16-Bak fragment. The re-
sulting DNA fragments were cut with SacII and ClaI and cloned

into SacII/ClaI-cut pKP496, yielding pKP583 and pKP584, re-
spectively (Table S1).
Igfbp2. The mouse Igfbp2ORF was amplified from a mouse cDNA
library using primers 1582 and 1584 for the Arg181-IgfbP2 frag-
ment or 1583 and 1584 for the Val181-IgfbP2 fragment. The re-
sulting DNA fragments were cut with SacII and ClaI and cloned
into SacII/ClaI-cut pKP496, yielding pKP566 and pKP567, re-
spectively (Table S1).
IkBα. The mouse IκBα ORF was amplified from the above mouse
cDNA library using primers 763 and 765 for the Glu51-IκBα
fragment or 764 and 765 for the Val51- IκBα fragment. The
resulting DNA fragments were cut with SacII and ClaI and
cloned into SacII/ClaI-cut pKP582, yielding pJO427 and
pJO428, respectively (Table S1).
c-Fos. The mouse c-Fos ORF was amplified using cDNA from
OpenBiosystems (ID: 2582234) and primers 760 and 762 for the
Arg91-c-Fos fragment or 761 and 762 for the Val91-cFOS fragment.
The resulting DNA fragments were cut with SacII and ClaI and
cloned into SacII/ClaI-cut pKP582, yielding pJO425 and pJO426,
respectively (Table S1).

In Vitro Transcription-Translation-Degradation Assays. The TNT T7
Coupled Transcription/Translation System, a version of the Prom-
ega’s rabbit reticulocyte extract preparation in which the main
components of the system were supplied separately, was used
to carry out transcription-translation-degradation assays (23, 24,
121). Reaction samples were prepared according to the manu-
facturer’s instructions. Nascent proteins in reticulocyte extract
were pulse-labeled with [35S]L-methionine (0.55 mCi/mL, 1,000
Ci/mmol, MP Biomedicals) for 10 min at 30 °C, in the total
volume of 30 μL. The labeling was quenched by the addition of
cycloheximide and unlabeled methionine to the final concen-
trations of 0.1 mg/mL and 5 mM, respectively. Samples were
withdrawn at indicated time points of a chase. The reactions
were terminated by the addition of 0.1 mL of TSD buffer (1%
SDS, 5 mM DTT, 50 mM Tris·HCl, pH 7.4) and snap-freezing
samples in liquid nitrogen. Samples were then heated at 95 °C for
10 min, diluted with 10 volumes of TNN buffer (0.5% Nonidet
P-40, 0.25 M NaCl, 5 mM EDTA, 50 mM Tris·HCl, pH 7.4),
containing the complete protease-inhibitor mixture (Roche), clar-
ified by centrifugation at 20,000 × g for 5 min, and immuno-
precipitated using 5 μL of anti-flag M2 Magnetic Beads. The
samples were incubated with rocking at 4 °C for 3 h, followed by
three washes in TNN buffer, one wash in 10 mM Tris·HCl (pH
8.5), and resuspension in 20 μL of SDS-sample buffer. The re-
sulting samples were heated at 95 °C for 5 min and fractionated
by SDS 4–12% PAGE, followed by autoradiography and quan-
tification, using Storm PhosphorImager (Molecular Dynamics)
and ImageQuant (GE Healthcare).

In Vivo URT-Based Degradation Assays.Human HEK293T cells were
obtained from American Type Culture Collection (ATCC). Cells
were grown at 37 °C with 5% (vol/vol) CO2 in DMEM supple-
mented with 10% FBS (Gemini Bio-Products) and penicillin/
streptomycin (100 units/mL) (HyClone). Cells were transfected at
∼75% confluency with 0.05–0.2 μg plasmid per 35-mm well using
Lipofectamine-2000 (Invitrogen) according to the manufac-
turer’s protocol. Transfected cells were labeled 48 h later for
20 min with [35S]L-methionine (0.1 mCi/mL; MP Biomedicals) in
DMEM lacking Met and Cys. The labeling was stopped by the
addition of cycloheximide (0.1 mg/mL) in complete DMEM
(containing 2.5 mM unlabeled Met as well). Samples (0.1 mL)
were withdrawn at indicated times of the chase, mixed with 0.1 mL
of TSD buffer (1% SDS, 5 mM DTT, 50 mM Tris·HCl, pH 7.4),
and the resulting samples were snap-frozen in liquid nitrogen.
Samples were then heated at 95 °C for 10 min and diluted with
10 volumes of TNN buffer (see above) containing the complete
protease-inhibitor mixture (Roche). Total 35S radioactivity in-
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soluble in 10% (vol/vol) CCl3COOH was then determined, and
volumes were adjusted to equalize 35S among different samples.
Thus, treated samples were processed for immunoprecipitation by
the addition of 5 μL of anti-flag M2 magnetic beads and incubation
with rocking at 4 °C for 3 h. Immunoprecipitated proteins were
washed three times in TNN buffer and once in 10 mM Tris·HCl
(pH 8.5), followed by the resuspension in 20 μL of SDS sample
buffer, heating at 95 °C for 10 min, SDS 4–15% PAGE, and au-
toradiography with quantification, as described above.

In Vitro Assays with fIca512f and fIca512f-K609V Full-Length Proteins.
A diagram of the N-terminal/C-terminal double tagging of a test
protein (to make possible the detection of both products of an in
vitro or in vivo protein cleavage) is shown in Fig. 6A and described
in the main text. The TNT T7 Coupled Transcription/Trans-
lation System (Promega) was used to carry out transcription-
translation-degradation assays as described above. fIca512f

and fIca512f-K609Vf (main text and Fig. 6) were labeled with
[35S]methionine (0.55 mCi/mL, 1,000 Ci/mmol; MP Bio-
medicals) for 60 min, in a total volume of 30 μL, followed by
buffer exchange using Zeba Spin Desalting Column (Pierce)
equilibrated with CC buffer [10% (vol/vol) glycerol, 50 mM NaCl,
0.5 mM DTT, 20 mM Tris·HCl, pH 7.4]. The cleavage of
fIca512f and fIca512f-K609Vf was initiated by the addition of
CaCl2 (to the final concentration of 2 mM) and purified human
calpain-1 [to a final concentration of 8.5 U/mL (70 nM)]. The
mixture was incubated at 30 °C for 30 min, and calpain was in-
hibited by adding z-VF (to the final concentration of 0.1 mM),
followed by buffer exchange using Zeba Spin Desalting Column
equilibrated with 1 mMMg-acetate, 60 mMK-acetate, and 10 mM
Tris-acetate (pH 8.2). An equal volume of fresh TNT reticulocyte
extract was added to the samples, followed by a chase at 30 °C for
30 and 120 min. Samples were withdrawn at indicated time points
of the chase and processed for analysis as described above for
URT assays.

In Vivo Assays with fIca512f and fIca512f-K609V Full-Length Proteins.
HEK293T cells were used for in vivo analyses of fIca512f and
fIca512f-K609V. To allow the natural processing and in-
tracellular localization of these ER-translocated, transmembrane
proteins, the N-terminal flag tag was placed immediately down-

stream of the signal peptide of Ica512 (main text). A membrane
localization of the in vivo–processed fIca512f was verified and
confirmed by immunoblotting with anti-flag antibody. Briefly,
HEK293T cells were transiently transfected with either a vector
plasmid or the otherwise identical plasmid (pKP599 and pKP600,
respectively) encoding fIca512f. Cells were detached from plates
36 h after transfection by pipetting and were collected by cen-
trifugation at 200 × g for 5 min. Pelleted cells were washed with
1 mL ice-cold PBS and resuspended in 0.2 mL PBS-EP (1× PBS
supplemented with 2 mM EDTA and 1× Complete Protease
Inhibitor; Roche), followed by sonication for 1 min and the initial
clarification by centrifugation at 200 × g for 5 min. The resulting
supernatants [clarified extract (CE); Fig. S2C) were centrifuged
at 20,000 × g for 15 min, yielding soluble cytosol (SC) and pellet
[membrane (M)] fractions. The latter fraction was washed with
0.25 mL PBS-EP and resuspended in PBS-EP. Samples of CE,
SC, and M fractions were mixed with 3× lithium dodecyl sulfate
(LDS) sample buffer (Invitrogen), heated at 70 °C for 10 min, and
fractionated by SDS/PAGE, followed by immunoblotting with
anti-flag antibody, an antibody to GAPDH (a largely cytosolic
protein) and visualization using ECL Plus Detection System (GE
Healthcare).
For in vivo degradation assays with fIca512f and fIca512f-K609V

that involved the calpain-induced cleavage of these full-length
proteins, HEK293T cells were transfected with plasmids expressing
either fIca512f and fIca512f-K609V. Approximately 48 h after
transfection, cells were labeled for 60 min with [35S]L-methionine
(0.1 mCi/mL; MP Biomedicals) in DMEM lacking Met and Cys.
Calpain-mediated cleavage of fIca512f and fIca512f-K609V was in-
duced by adding DMEM containing the following additional com-
pounds: 50 μM A23184 (Ca2+ ionophore), 3 mM CaCl2, 2.5 mM
methionine, 2.5 mM cysteine, and 0.1 mg/mL cycloheximide. Cells
were incubated at 37 °C for 60 min. The cell-penetrating calpain
inhibitor z-VF was then added to the final concentration of 0.1 mM,
followed by a chase for 1.5 and 6 h. Cells were harvested by cen-
trifugation, lysed by the addition of 0.1 mL of TSD buffer, and snap-
frozen in liquid nitrogen. Samples were then heated at 95 °C for
10 min and diluted with 10 volumes of TNN buffer, followed by
immunoprecipitation with anti-flag M2 magnetic beads, SDS/PAGE,
autoradiography, and quantification as described above.
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Fig. S1. Evolutionary conservation of destabilizing activity of P1′ residues in calpain cleavage sites. Arrowheads indicate calpain cleavage sites. P1′ residues,
which become N-terminal upon the cleavage, are larger and colored. Domain organization and approximate location of a calpain cleavage site are indicated
for each protein. Specific positions of P1′ residues are indicated as well for the first cited protein in a sequence alignment, specifically, for the human [Homo
sapiens (Hs)] calpain-1 (Capn1) in B and for the mouse [Mus musculus (Mm)] proteins in A and C–E. See the main text for descriptions of the cited proteins. (A)
c-Fos. (B) Capn1. (C) Igfbp2. (D) Ica512. (E) Atp2b2.

Piatkov et al. www.pnas.org/cgi/content/short/1401639111 7 of 11

www.pnas.org/cgi/content/short/1401639111


Fig. S2. In vivo degradation of a calpain-generated protein fragment. (A) HEK293T cells were transiently transfected with URT-based plasmids (Fig. 4A)
expressing the Phe1279-GluN2af fragment (Figs. 2, #13, 3D, and 4B) or the otherwise identical Val1279-GluN2af fragment. Cells were labeled for 20 min with
[35S]methionine, followed by a chase for 30 and 60 min, immunoprecipitation of cell extracts with anti-flag antibody, SDS/PAGE, and autoradiography (SI
Materials and Methods). (B) Quantification of data in A. (C) Verification of the predominantly membrane localization of fIca512f in vivo. HEK293T cells were
transiently transfected either with a plasmid expressing doubly flag-tagged, full-length fIca512f (Fig. 6A) or with vector alone. Cell extracts were clarified by
a brief low-speed centrifugation (200 × g for 5 min; SI Materials and Methods). The supernatants [clarified extract (CE)] were centrifuged at 20,000 × g for
15 min to pellet cell membranes, yielding the membrane (M) and soluble cytosol (SC) fractions. The resulting samples were subjected to SDS/PAGE, followed by
immunoblotting with anti-flag antibody and antibody to GAPDH, a largely cytosolic protein. The notation “load, %” indicates relative amounts of fractions
subjected to SDS/PAGE. Lanes 1–3, immunoblotting analyses of CE, SC, and M fractions from HEK293T cells transfected with vector alone. Lanes 4–6, same as
lanes 1–3 but cells were transfected with the plasmid expressing fIca512f. (D) Autoprocessing of calpain. Purified human calpain-1 (SI Materials and Methods) in
10% (vol/vol) glycerol, 50 mM NaCl, 0.5 mM DTT, and 20 mM Tris·HCl (pH 7.4) was shifted to 40 μM CaCl2 in the same buffer, followed by SDS/PAGE and
Coomassie staining at indicated time points. Lane 1, molecular mass markers. Lane 2, a 30-min incubation of calpain-1 under the above conditions plus 0.5 mM
EGTA, a Ca2+-chelating compound. Lanes 3–8, same as lane 2 but no EGTA and incubation times from 0 to 30 min, as indicated.
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Table S1. Plasmids used in this study

Plasmid Description Source or reference

pcDNA3.0-Neo AmpR; NeoR; Expression vector for cloning your gene of interest Invitrogen
Clone: 8861782 AmpR; fragment of mouse Ankrd2 cDNA Open Biosystems
Clone: 5223130 AmpR; full length human Capn1 cDNA Open Biosystems
Clone: 5749709 AmpR; full length human Capn2 cDNA Open Biosystems
Clone: 30544252 AmpR; full length mouse Grm1 cDNA Open Biosystems
Clone: 4987532 AmpR; fragment of mouse Ica512 cDNA Open Biosystems
Clone: 2582234 AmpR; full length mouse c-Fos cDNA Open Biosystems
pKP496 AmpR; NeoR; pcDNA3.0-based plasmid encoding

flag-DHFR-ha-Ub-MCS-flag under the control of CMV promoter.
MCS has SacII, EcoRI, XhoI, ClaI and EcoRV unique cloning sites.

(23)

pKP536 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Leu28-hCapn1f under the control of T7 or CMV promoter

This study

pKP537 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val28-Capn2f under the control of T7 or CMV promoter

This study

pKP564 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Tyr937-mGrm1f under the control of T7 or CMV promoter

This study

pKP565 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val937-mGrm1f under the control of T7 or CMV promoter

This study

pKP566 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Arg181-mIgfpb2f under the control of T7 or CMV promoter

This study

pKP567 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val181-m Igfpb2f under the control of T7 or CMV promoter

This study

pKP568 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Phe1279-mGluN2af under the control of T7 or CMV promoter

This study

pKP569 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val1279-mGluN2af under the control of T7 or CMV promoter

This study

pKP574 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Lys609-mIca512f under the control of T7 or CMV promoter

This study

pKP575 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val609-mIca512f under the control of T7 or CMV promoter

This study

pKP576 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Arg103-mAnkrd2f under the control of T7 or CMV promoter

This study

pKP577 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val103-mAnkrd2f under the control of T7 or CMV promoter

This study

pKP578 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Asp143-mCapns1f under the control of T7 or CMV promoter

This study

pKP579 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val143-mCapns1f under the control of T7 or CMV promoter

This study

pKP582 AmpR; NeoR; pcDNA3.0-based plasmid encoding
flag-lacZ25-119-DHFR-ha-Ub-MCS-flag under the control of CMV promoter.
MCS has SacII, EcoRI, XhoI, ClaI and EcoRV unique cloning sites.

This study

pKP583 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Glu16-mBakf under the control of T7 or CMV promoter

This study

pKP584 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val16-mBakf under the control of T7 or CMV promoter

This study

pKP599 AmpR; NeoR; pcDNA3.0-based plasmid encoding full length
fIca512f under the control of T7 or CMV promoter

This study

pKP600 AmpR; NeoR; pcDNA3.0-based plasmid encoding
Lys609Val mutant of full length fIca512f (fIca512f-K609V)
under the control of T7 or CMV promoter

This study

pKP631 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Lys10-hCapn2f under the control of T7 or CMV promoter

This study

pKP632 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val10-hCapn2f under the control of T7 or CMV promoter

This study

pJO386 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Arg1091-mAtb2b2f under the control of T7 or CMV promoter

This study

pJO387 AmpR; NeoR; pcDNA3.0-based plasmid encoding
fDHFR-UbK48R-Val1091-mAtb2bf under the control of T7 or CMV promoter

This study

pJO425 AmpR; NeoR; pcDNA3.0-based plasmid encoding
flag-lacZ25-119-DHFR-UbK48R-Arg91-mc-Fosf under the control
of T7 or CMV promoter

This study
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Table S1. Cont.

Plasmid Description Source or reference

pJO426 AmpR; NeoR; pcDNA3.0-based plasmid encoding
flag-lacZ25-119-DHFR-UbK48R-Val91-mc-Fosf under the control
of T7 or CMV promoter

This study

pJO427 AmpR; NeoR; pcDNA3.0-based plasmid encoding
flag-lacZ25-119-DHFR-UbK48R-Glu51-mIκBαf under the
control of T7 or CMV promoter

This study

pJO428 AmpR; NeoR; pcDNA3.0-based plasmid encoding
flag-lacZ25-119-DHFR-UbK48R-Val51-mIκBαf under the
control of T7 or CMV promoter

This study
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Table S2. Primers used in this study

Primer Primer’s sequence

706 TTTTTTCTAGACTAACCTTTGTCGTCATCGTC

757 GGGCCGCGGAGGACGGATCCAGACACAGATCCGCGTCGTGAAG

758 GGGCCGCGGAGGAGTTATCCAGACACAGATCCGCGTCGTGAAG

759 CGCCGATATCCATGGACATAGCCATAAGCGACGTCTCCAGGCTGTGGATGGGGCT

760 GGGCCGCGGAGGAAGAGCGCCCCATCCTTACGGACTCCCCACC

761 GGGCCGCGGAGGAGTTGCGCCCCATCCTTACGGACTCCCCACC

762 CGCCATCGATCATAGCCATCAGGGCCAGCAGCGTGGGTGAGCTCAGGGA

763 GGGCCGCGGAGGAGAGATCCGCCTGCAGCCGCAGGAGGCGCCG

764 GGGCCGCGGAGGAGTTATCCGCCTGCAGCCGCAGGAGGCGCCG

765 CGCCATCGATCATGGACATAGCCATTAATGTCAGACGCTGGCCTCCAAACACACA

1490 TTTTAATCGATGTGATGATGGTGGTGGTGATGTGCAAACATGGTCAGCTGCAA

1510 AAAAACCGCGGAGGACTGGGCCGCCATGAGAATGCC

1511 AAAAACCGCGGAGGAGTTGGCCGCCATGAGAATGCC

1512 GGGAGCACCGCTGGGGGCTGCCG

1513 CGGCAGCCCCCAGCGGTGCTCCC

1570 AAAAACCGCGGAGGACGTGAGATCATTGATGTGGGTGGGA

1571 AAAAACCGCGGAGGAGTTGAGATCATTGATGTGGGTGGGA

1572 TTTTAATCGATCTGGGCTGGTATAGGCTGAGGTG

1576 AAAAACCGCGGAGGAGACACTTGTCGGAGCATGGTGGCCG

1577 AAAAACCGCGGAGGAGTTACTTGTCGGAGCATGGTGGCCG

1578 TTTTAATCGATGGAATACATAGTCAGCTGCAGCCACT

1579 AAAAACCGCGGAGGATACCAAGGCTCTGGCAAGAGTCTGA

1580 AAAAACCGCGGAGGAGTTCAAGGCTCTGGCAAGAGTCTGA

1581 TTTTAATCGATCAGAGTGGAAGAGCTTTGCTTGTAG

1582 AAAAACCGCGGAGGACGGCAGATGGGCAAGGGTGCCAAAC

1583 AAAAACCGCGGAGGAGTTCAGATGGGCAAGGGTGCCAAAC

1584 TTTTAATCGATCTGCACACTTTGGGCATGGGC

1585 AAAAACCGCGGAGGATTCCAGAAGAACAAGCTAAAGATTAATCGACA

1586 AAAAACCGCGGAGGAGTTCAGAAGAACAAGCTAAAGATTAATCGACA

1587 TTTTAATCGATGACATCAGATTCAATACTAGGCATTTT

1591 AAAAACCGCGGAGGAAAGGAGCGCCTGGCAGCGCTGGGGC

1592 AAAAACCGCGGAGGAGTTGAGCGCCTGGCAGCGCTGGGGC

1593 TTTTAATCGATCTGGGGCAGGGCCTTGAGGAT

1597 TCCTGGTACTCAAAAGTAGTGTCACCATGGGCCCCCTCCGGCCCCAGCGCTGCCAGGCGC

1598 GGTGACACTACTTTTGAGTACCAGGACC

1605 ACCCAAGCTTATGGACTACAAGGACGACGATGACAAGGGTGCACGACAGGTTTCCCGACT

1606 TTAAAGGATCCATTCTCCGTGGGAACAAACGG

1610 AAAAACCGCGGAGGAGAGTCCCCGTCCCCTTCTGAACA

1611 AAAAACCGCGGAGGAGTTTCCCCGTCCCCTTCTGAACA

1612 TTTTAATCGATAACCACGCTGGTAGACGTACAGG

1632 AAAAAAAGCTTAGGAGGCCACCATGAGGCGCCCGCGGCGGCC

1633 ACCTTTGTCGTCATCGTCTTTGTAGTCGGCACTGATGGCGCTGCAGCCCCCGG

1634 CGACTACAAAGACGATGACGACAAAGGTCACGGCTGTCTGTTTGACCGCAG

1635 GTACTTCCTCCTCATGGCCCTCTGAAG

1636 CTTCAGAGGGCCATGAGGAGGAAGTAC

1637 TTTTAAGCGCTGCCAGGCGCTCCTTATCCCGCTGTCTCGAATG

1638 TTTTAAGCGCTGCCAGGCGCTCAACATCCCGCTGTCTCGAATG

1731 AAAAACCGCGGAGGAAAGGACCGGGAGGCGGCCGAGGGGCT

1732 AAAAACCGCGGAGGAGTTGACCGGGAGGCGGCCGAGGGGCT

1733 GATGGCCTCCGAGTCAGCGGCGCTGGTGATG

1734 CATCACCAGCGCCGCTGACTCGGAGGCCATC

1735 TTCCTGCAACCTCCAGCGGTGGAGCCCCGC

1736 GCGGGGCTCCACCGCTGGAGGTTGCAGGAA

1737 CTAACCTTTGTCGTCATCGTCTTTGTAGTCAAGTACTGAGAAACAGAGCCAAGA
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