
Supplemental Material

S1: The full posterior distribution

Following the notation in the main paper’s Methods section, the model parameters consist

of θ, ε, λ, and Z(x). We represent the transitions of IBD states Z(x) along chromosomes

by transition location xk and the resulting state zk = Z(xk) for k = 1, ..., K, where an IBD

transition occurs between nucleotide sites at xk − 1 and xk for k ≥ 2. For convenience we

set x1 = 1 and xK+1 = ` + 1, where ` is the length of the chromosome in base pairs (bp).

Let x = {xk}k=1..K+1 and z = {zk}k=1..K denote the vectors of transition points and IBD

partitions. Let s = {si}i=1..m and π = {πi}i=1..m, denote the vectors of SNP sites and their

minor allele frequencies. These allele frequencies π and SNP locations s are assumed to be

known. Finally, let yi = {yij}j=1..n denote the vector of observed alleles at SNP site i over

gametes j, and y = {yij}i=1..m,j=1..n the complete data over all gametes and sites. Note that

subscript i indexes the SNP sites, j the gametes, and k the IBD transition locations.

The full posterior distribution is given by

p(θ, ε, λ,K,x, z|y,π, s) ∝ p(y|π, s, K,x, z, ε) p(K,x, z|θ, λ) p(θ) p(λ) p(ε),

where each term is explained as follows. First, the SNPs are assumed to be independent

given the latent IBD state, so that the likelihood term is a product over SNP sites:

p(y|π, s, K,x, z, ε) =
m∏
i=1

p(yi | Z(si), πi, θ, ε).

Additionally, since we assume independence of the allelic type of non-IBD DNA, each term

in the product over SNPs is again a product over the IBD subsets of gametes. Second, the

IBD process along the chromosome is modeled as a continuous time Markov process, with

the prior distribution given by

p(K,x, z|θ, λ) = p(z|K, θ) p(K,x|λ).
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The probability of the vector z of IBD partitions is given by

p(z | K, θ) = p(z1 | θ)
K−1∏
i=1

p(zi+1 | zi, θ),

where the distribution for the initial IBD state z1 is given by the ESF (main paper Equation

1), and the transition probability p(zi+1 | zi, θ) can be calculated from the modified Chinese

restaurant processes (MCRP) (main paper Equations 2 and 3).

Since λ� 1 and thus K � `, the geometrically distributed discrete inter-transition base-

pair counts are approximated by exponential distributions for the inter-transition distances.

That is, if K is not constrained,

p(K,x | λ) ∝ (1− λ)xK+1−xK−1
K−1∏
i=1

((1− λ)xi+1−xi−1λ) ≈ λK−1e−λ`.

If K is bounded by Kc < ∞, the distribution of K will involve a normalization constant

that depends on λ. That is

p(K,x | λ) ∝ C(λ)λK−1e−λ`,

where C(λ) = Γ(Kc, λ`)/Γ(Kc), and the numerator is the incomplete Gamma function:

Γ(a, b) =
∫∞
b
ta−1e−tdt.

(Note C(λ) = 1 if Kc =∞.) Thus x is uniform on the space 1 = x1 < x2 < .... < xK+1 = `+1

and
∫
dx = `K−1/(K − 1)!. Then

p(K | λ) =

∫
p(K,x | λ)dx =

 C(λ)(λ`)K−1e−λ`/(K − 1)! if K ≤ Kc

0, if K > Kc

.

That is, the prior distribution for (K − 1) is a truncated Poisson distribution with mean λ`.

The prior distributions for θ and λ are Gamma distributions, where that for θ is bounded

below by θc. Thus if G[u | α, β] = (Γ(α)βα)−1uα−1e−u/β denotes the gamma probability

density on u > 0 with shape parameter α and scale parameter β, the prior distribution of θ

is

p(θ) ∝

 G[θ | αθ, βθ] if θ ≥ θc

0 if θ < θc,

2



and the prior distribution of λ is

p (λ) = Γ[λ | αλ, βλ]

The prior distribution of ε is the uniform distribution in [0, 1]:

p(ε) =

 1 if 0 ≤ ε ≤ 1

0 otherwise.
.

In general λ must be sampled via a Metropolis algorithm, but if Kc =∞ the full condi-

tional distribution for λ is the gamma distribution G(λ | (K + αλ − 1), (β−1λ + `)−1). In this

case λ can be integrated out to obtain the posterior distribution on the other parameters:

p(θ, ε,K,x, z | y,π, s) ∝ p(y | π, s, K,x, z, ε) p(z | K, θ) p(K,x) p(θ) p(ε), (S1)

where

p(K,x) =

∫
p(K,x | λ) p(λ) dλ ∝ Γ(K + αλ − 1) (β−1λ + `)−(K+αλ−1).

S2: Possible transitions between two IBD states zA and zB

In this section we list all the transformations between two IBD states that differ by at most

two steps (|zA − zB| ≤ 2). In describing these transformations, we use lower case letters a,

b, c and d to denote gametes, and upper case X, Y , P and Q to denote IBD subsets. The

notation {a,X} will denote the subset {a}
⋃
X. Note that any specified gamete such as a is

not in any specified subset such as X. We denote the size of subset X by |X|, and group the

transformations by the pair of sizes (|zA|, |zB|) for the numbers of subsets in the two IBD

states that are involved in the transformation. Note that the IBD subsets shared between

zA and zB are irrelevant.

Case |zA − zB| = 0: If zA = zB no transformation is needed.

Case |zA − zB| = 1: Recall that one step of our process can move one gamete a from a

source subset S to a target set T . This move results from proposing the new gamete in set

T , and then deleting a from S, and the transformation is denoted (a : S → T ). In Table S1,

we give both the transformation from zA to zB and the transformation from zB to zA.
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Case |zA − zB| = 2: In Table S2, we denote the intermediate state by zI , and give the

transformations from zA to zI and from zB to zI .

# subsets Subsets Subsets Transformation Transformation Condition

in zA, zB in zA in zB zA → zB zB → zA

1, 2 {a, b} {a}, {b} (a : {a, b} → {})

(b : {a, b} → {})

(a : {a} → {b})

(b : {b} → {a})

{a,X} {a}, X (a : {a,X} → {}) (a : {a} → X) |X| ≥ 2

2, 2 {a,X}, Y X, {a, Y } (a : {a,X} → Y ) (a : {a, Y } → X) |X| ≥ 1

|Y | ≥ 1

Table S1: List of transformations for |zA − zB| = 1.
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# subsets Subsets Subsets Transformation Transformation Subsets Condition

in zA, zB in zA in zB zA → zI zB → zI in zI

1, 2 {a, b, c, d} {a, b}, {c, d} (a : {a, b, c, d} → {}) (b : {a, b} → {c, d}) {a}, {b, c, d}

(b : {a, b, c, d} → {}) (a : {a, b} → {c, d}) {b}, {a, c, d}

(c : {a, b, c, d} → {}) (d : {c, d} → {a, b}) {c}, {a, b, d}

(d : {a, b, c, d} → {}) (c : {c, d} → {a, b}) {d}, {a, b, c}

{a, b,X} {a, b}, X (a : {a, b,X} → {}) (b : {a, b} → X) {a}, {b,X} |X| ≥ 3

(b : {a, b,X} → {}) (a : {a, b} → X) {b}.{a,X}

1, 3 {a, b, c} {a}, {b}, {c} (a : {a, b, c} → {}) (b : {b} → {c})

(c : {c} → {b})

{b, c}, {a}

(b : {a, b, c} → {}) (a : {a} → {c})

(c : {c} → {a})

{a, c}, {b}

(c : {a, b, c} → {}) (a : {a} → {b})

(b : {b} → {a})

{a, b}, {c}

{a, b,X} {a}, {b}, X (a : {a, b,X} → {}) (b : {b} → X) {b,X}, {a} |X| ≥ 2

(b : {a, b,X} → {}) (a : {a} → X) {a,X}, {b}

2, 2 {a, b, c}, {d} {c}, {a, b, d} (a : {a, b, c} → {d}) (b : {a, b, d} → {c}) {b, c}, {a, d}

(b : {a, b, c} → {d}) (a : {a, b, d} → {c}) {a, c}, {b, d}

(c : {a, b, c} → {d}) (d : {a, b, d} → {c}) {a, b}, {c, d}

(c : {a, b, c} → {}) (d : {a, b, d} → {}) {a, b}, {c}, {d}

(d : {d} → {a, b, c}) (c : {c} → {a, b, d}) {a, b, c, d}

{a, b,X}, Y X, {a, b, Y } (a : {a, b,X} → Y ) (b : {a, b, Y } → X) {b,X}, {a, Y } |X| ≥ 1

(b : {a, b,X} → Y ) (a : {a, b, Y } → X) {a,X}, {b, Y } |Y | ≥ 2
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{a, b}, {c, d} {a, c}, {b, d} (a : {a, b} → {c, d}) (d : {b, d} → {a, c}) {b}, {a, c, d}

(b : {a, b} → {c, d}) (c : {a, c} → {b, d}) {a}, {b, c, d}

(c : {c, d} → {a, b}) (b : {b, d} → {a, c}) {d}, {a, b, c}

(d : {c, d} → {a, b}) (a : {a, c} → {b, d}) {c}, {a, b, d}

{a,X}, {b} {b,X}, {a} (a : {a,X} → {b}) (b : {b,X} → {a}) X, {a, b} |X| ≥ 3

(b : {b} → {a,X}) (a : {a} → {b,X}) {a, b,X}

(a : {a,X} → {}) (b : {b,X} → {}) X, {a}, {b}

{a,X}, {b, Y } {b,X}, {a, Y } (a : {a,X} → {b, Y }) (b : {b,X} → {a, Y }) X, {a, b, Y } |X| ≥ 1

|Y | ≥ 2

(b : {b, Y } → {a,X}) (a : {a, Y } → {b,X}) {a, b,X}, Y or |X| ≥ 2

|Y | ≥ 1

2, 3 {a, b, c}, {d} {a}, {c}, {b, d} (a : {a, b, c} → {}) (b : {b, d} → {c}) {b, c}, {a}, {d}

(b : {a, b, c} → {d}) (a : {a} → {c})

(c : {c} → {a})

{a, c}, {b, d}

(c : {a, b, c} → {}) (b : {b, d} → {a}) {a, b}, {c}, {d}

{a, b,X}, Y X, {a}, {b, Y } (a : {a, b,X} → {}) (b : {b, Y } → X) {a}, {b,X}, Y |X| ≥ 2

(b : {a, b,X} → Y ) (a : {a} → X) {a,X}, {b, Y } |Y | ≥ 1

{a, c}, {b, d} {a}, {b, c}, {d} (a : {a, c} → {})

(c : {a, c} → {})

(b : {b, c} → {d}) {a}, {c}, {b, d}

(b : {b, d} → {})

(d : {b, d} → {})

(c : {b, c} → {a}) {b}, {d}, {a, c}

(b : {b, d} → {a, c}) (a : {a} → {b, c}) {a, b, c}, {d}

(c : {a, c} → {b, d}) (d : {d} → {b, c}) {b, c, d}, {a}
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{a, c}, {b, Y } {a}, {b, c}, Y (b : {b, Y } → {}) (c : {b, c} → {a}) {a, c}, {b}, Y |Y | ≥ 2

(b : {b, Y } → {a, c}) (a : {a} → {b, c}) {a, b, c}, Y

(a : {a, c} → {})

(c : {a, c} → {})

(b : {b, c} → Y ) {a}, {c}, {b, Y }

{a,X}, {b, Y } {a}, {b,X}, Y (a : {a,X} → {}) (b : {b,X} → Y ) {a}, X, {b, Y } |X| ≥ 2

(b : {b, Y } → {a,X}) (a : {a} → {b,X}) {a, b,X}, Y |Y | ≥ 2

{a,X}, {b, Y } {a, b}, X, Y } (a : {a,X} → {}) (b : {a, b} → Y ) {a}, X, {b, Y } |X| ≥ 2

(b : {b, Y } → {}) (a : {a, b} → X) {a,X}, {b}, Y |Y | ≥ 2

2, 4 {a, b}, {c, d} {a}, {b}, {c}, {d} (a : {a, b} → {})

(b : {a, b} → {})

(c : {c} → {d})

(d : {d} → {c})

{a}, {b}, {c, d}

(c : {c, d} → {})

(d : {c, d} → {})

(a : {a} → {b})

(b : {b} → {a})

{a, b}, {c}, {d}

{a, b}, {c, Y } {a}, {b}, {c}, Y (a : {a, b} → {})

(b : {a, b} → {})

(c : {c} → Y ) {a}, {b}, {c, Y } |Y | ≥ 2

(c : {c, Y } → {}) (a : {a} → {b})

(b : {b} → {a})

{a, b}, {c}, Y

{a,X}, {c, Y } {a}, X, {c}, Y (a : {a,X} → {}) (c : {c} → Y ) {a}, X, {c, Y } |X| ≥ 2

(c : {c, Y } → {}) (a : {a} → X) {a,X}, {c}, Y |Y | ≥ 2

3,3 {a,X}, {b}, Y {a}, X, {b, Y } (a : {a,X} → {}) (b : {b, Y } → {}) {a}, X, {b}, Y |X| ≥ 1

(b : {b} → Y ) (a : {a} → X) {a,X}, {b, Y } |Y | ≥ 1

{a,X}, {b, Y }, P X, Y, {a, b, P} (a : {a,X}, P ) (b : {a, b, P} → Y ) X, {a, P}, {b, Y } |X| ≥ 1

(b : {b, Y } → P ) (a : {a, b, P} → X) {a,X}, {b, P}, Y |Y | ≥ 1

|P | ≥ 1
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{a,X}, {b, Y }, P {b,X}, Y, {a, P} (a : {a,X} → P ) (b : {b,X} → Y ) X, {b, Y }, {a, P} |X| ≥ 1

(b : {b, Y } → {a,X}) (a : {a, P} → {b,X}) {a, b,X}, Y, P |Y | ≥ 1

|P | ≥ 1

3, 4 {a,X}, Y, {b, c} X, {a, Y }, {b}, {c} (a : {a,X} → Y ) (b : {b} → {c})

(c : {c} → {b})

X, {a, Y }, {b, c} |X| ≥ 1

|Y | ≥ 1

(b : {b, c} → {})

(c : {b, c} → {})

(a : {a, Y } → X) {a,X}, Y, {b}, {c}

{a,X}, Y, {b, P} X, {a, Y }, {b}, P (a : {a,X} → Y ) (b : {b} → P ) X, {a, Y }, {b, P} |X| ≥ 1

|Y | ≥ 1

(b : {b, P} → {}) (a : {a, Y } → X) {a,X}, Y, {b}, P |P | ≥ 2

4,4 {a,X}, Y,

{b, P}, Q

X, {a, Y },

P, {b,Q}

(a : {a,X} → Y ) (b : {b,Q} → P ) X, {a, Y }, {b, P}, Q |X| ≥ 1

|Y | ≥ 1

(b : {b, P} → Q) (a : {a, Y } → X) {a,X}, Y, P, {b,Q} |P | ≥ 1

|Q| ≥ 1

Table S2: List of transformations for |zA − zB| = 2.
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S3: The proposal distributions of an IBD state

We define three IBD proposal distributions used in the Metropolis type sampling from the

full posterior distribution (section S4).

(A) One-side distribution. Let q(z|zA) be the proposal distribution where the IBD state z

is proposed from zA according to the MCRP.

(B) Two-side distribution. Let q(z|zA, zB) be a proposal distribution for z as an interme-

diate state between zA and zB. Thus |zA − zB| ≤ 2, and the proposed z must satisfy

|z − zA| ≤ 1 and |z − zB| ≤ 1. We define q(z|zA, zB) for three cases:

• |zA − zB| = 0 (zA = zB). We sample z from q(z|zA).

• |zA − zB| = 1. We sample z = zA with probability 1/4, z = zB with probability

1/4, and otherwise generate the proposal by the following three steps:

– Insert a new gamete into a subset of zA of size j with probability j/(n+ θ),

or insert it as a new singleton with probability θ/(n+ θ).

– Delete the gamete that is deleted in a randomly chosen transformation from

zA to zB (see Table S1).

– Label the new gamete as the deleted one.

• |zA − zB| = 2. We list all the possible intermediate states, and randomly choose

one of them (Table S2).

(C) Propagation distribution. Suppose that zA and zB are two consecutive IBD states along

the chromosome (|zA− zB| ≤ 1) and also that |zA− zC | = 1. Let q(z|zA, zB, zC) be the

proposal distribution of an IBD state z satisfying |z − zB| ≤ 1 and |z − zC | ≤ 1. Thus

there are four cases as shown in Figure S1.

• I: |zA − zB| = 0 and |zB − zC | = 1. Set z = zB.

• II: |zA − zB| = 1 and |zB − zC | = 0. Set z = zB.

• III: |zA − zB| = 1 and |zB − zC | = 1. Set z = zB.
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Figure S1: The possible scenarios for state z under q(z|zA, zB, zC). The distance between

each pair of states is shown on the joining lines.

• IV: |zA − zB| = 1 and |zB − zC | = 2. Sample z uniformly from all the possible

IBD states satisfying the distance constraints (Table S2). If there is no such IBD

state, reject the proposal

Note that q(zB|zC , z, zB) is the reverse proposal distribution to q(z|zA, zB, zC).

Cases I and II are paired in this reversal, while cases III and IV remain unchanged.

S4 Sampling the posterior distribution via MCMC

We estimate the model parameters θ, λ, ε, K, x, and z by MCMC, using several versions of

the Metropolis algorithm. Our general notation for the target distribution of state variables

ω, is p(ω), and the proposal distribution for a new state given current state ωt is q(·|ωt). The

acceptance probability of proposed state ω∗ is

min

(
1,
p(ω∗)

p(ωt)
/
q(ω∗|ωt)
q(ωt|ω∗)

)
. (S2)

If the proposal is accepted ωt+1 = ω∗, and otherwise ωt+1 = ωt. We refer to the ratio

p(ω∗)/p(ωt) in equation S2 as the target ratio, and the ratio q(ω∗|ωt)/q(ωt|ω∗) as the proposal

ratio. In the case of reversible jump MCMC, the acceptance probability also includes a

Jacobian factor (Green 1995).
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The full conditional distributions of θ, ε and λ are given by

p(θ | ·) ∝ p(z | K, θ) p(θ)

p(ε | ·) ∝ p(y | π, s, K,x, z, ε) p(ε)

p(λ | ·) ∝ p(K,x | λ) p(λ) in general

and p(λ | ·) = Γ(λ|K + αλ − 1, 1/
(
β−1λ + `)

)
if Kc =∞ (equation S1).

To sample θ, ε and λ from their full conditional distributions, we use random walk Metropolis

algorithms (Gelman et al. 1996) for each parameter separately (except in the case where λ

can be sampled directly). In this case the proposal ratio in equation S2 is equal to 1, and only

the target ratio is required. In each case the proposal distribution is a normal distribution

centered at the current value with the variance adjusted to give an acceptance ratio around

0.44 (Gelman et al. 2004).

Since the insertion or deletion of IBD change points involves a change in the dimension

of the parameter space, we update K, x, and z by reversible jump MCMC (Green 1995).

We use six move types in the sampler: (A) update a transition location, (B) update an IBD

state, (C) update an IBD state with downstream modification, (D) insert an IBD transition,

(E) delete an IBD transition, and (F) update segments of IBD states by swapping their

gamete labels. We denote by ϕi (i = A, ..., F ) the sampling probability for move type i. In

move types (D-E), the parameter dimensions change by a transition location and an IBD

state at the location, and the Jacobian factor is 1.

In the following, we describe the proposals and give the proposal ratios for all the move

types (A-F), the target ratios for move types (D-E), and the full conditional distributions

for move types (A-C) and (F) from which the target ratio can be obtained.

(A) Single update of a transition location. First randomly choose 2 ≤ k ≤ K, and then

sample a proposal value x∗k from a discrete uniform distribution in the range from

xk−1 + 1 to xk+1 − 1. The full conditional posterior distribution is

p(xk|·) ∝
∏

{i|xk−1<si<xk+1}

p(yi | Z(si), πi, θ, ε).

The proposal ratio is 1 as the proposal distribution is symmetric.
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(B) Single update of an IBD state. First randomly choose 1 ≤ k ≤ K. If there are no

IBD transitions (K = 1), a proposal state is sampled from q (z∗1 |z1). If the focal IBD

state is at an end of the chromosome (k = 1 or K ), a proposal state is sampled from

q (z∗1 |z2) for k = 1 and from q (z∗K |zK−1) for k = K. Otherwise, a proposal state z∗k is

sampled from q (z∗k|zk−1, zk+1). The full conditional posterior distribution is

p (zk|·) ∝
∏

{i|xk≤si<xk+1}

p(yi|Z(si), πi, θ, ε) p(zk+1|zk, θ) p(zk|zk−1, θ),

where p(zK+1|zK , θ) = p(z1|z0, θ) = 1 for the cases k = 1 or K.

The proposal ratio is

q(z∗1 |z1)/q(z1|z∗1) if K = 1, and otherwise q(z∗1 |z2)/q(z1|z2) if k = 1,

q(z∗K |zK−1)/q(zK |zK−1) if k = K, and otherwise q (z∗k|zk−1, zk+1) /q (zk|zk−1, zk+1) .

(C) Single update of an IBD state with downstream modification. First randomly choose

k, 1 ≤ k ≤ K. If K = 1 or k = K, update using move type (B). If k = 1, sample

z∗1 from q(z∗1 |z1). Otherwise for k > 1, set z∗l = zl for l = 1 . . . k − 1, and sample z∗k

sampled from q(z∗k|zk−1, zk). If z∗k = zk we set l′ = k + 1. Otherwise we iteratively

sample z∗l from q(z∗l |zl−1, zl, z∗l−1) from l = k + 1 until there exists l′ ≥ k + 1 such that

z∗l′ = zl′ or l′ = K+ 1. If l′ < K, we set z∗l = zl for l = l′+ 1 . . . K. The full conditional

distribution is

p({Z(x)}xk≤x<xl′ |·) ∝
∏

{i|xk≤si<xl′}

p(yi|Z(si), πi, θ, ε)
l′−1∏
l=k−1

p(zl+1|zl, θ),

where p(zK+1|zK , θ) is set to be 1 for l′ = K + 1. The proposal ratio is given by

q(z∗k|zk)
q(zk|z∗k)

∏l′−1
l=k q(z

∗
l |zl−1, zl, z∗l−1)∏l′−1

l=k q(zl|, z∗l−1, z∗l , zl−1)

if k = 1, and otherwise (1 < k < K) by

q(z∗k|zk, zk−1)
q(zk|z∗k, z∗k−1)

∏l′−1
l=k q(z

∗
l |zl−1, zl, z∗l−1)∏l′−1

l=k q(zl|, z∗l−1, z∗l , zl−1)
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(D) Insert one IBD transition. First randomly choose k, 1 ≤ k ≤ K. Then insert an

IBD transition location into x to give x∗ with x∗k+1, sampled from the discrete uniform

distribution in the range from xk + 1 to xk+1− 1. Set z∗l = zl for l = 1 . . . k, and insert

z∗k+1 sampled from q(z∗k+1|zk). If k = K we set l′ = K + 2, and if z∗k+1 = zk we set

l′ = k+ 2. Otherwise we iteratively sample z∗l from q(z∗l |zl−2, zl−1, z∗l−1) from l = k+ 2

until there exists l′ ≥ k + 2 such that z∗l′ = zl′−1 or l′ = K + 2. If l′ < K + 1, we set

z∗l = zl−1 for l = l′ + 1 . . . K + 1. The target ratio is

p(K + 1,x∗, z∗|·)
p(K,x, z|·)

=

∏
{i|x∗k<si<x

∗
l′}
p(yi|Z∗(si), πi, θ, ε)∏

{i|xk<si<xl′−1}
p(yi|Z(si), πi, θ, ε)

∏l′−1
l=k p(z

∗
l+1|z∗l , θ)∏l′−2

l=k p(zl+1|zl, θ)
p(K + 1,x∗)

p(K,x)
,

where the term p(K + 1,x∗)/p(K,x) is replaced by p(K + 1,x∗|λ)/p(K,x|λ) if λ is

sampled (equation S1), p(zK+1|zK , θ) and p(z∗K+2|z∗K+1, θ) are set to be 1 for l′ = K+2.

The proposal ratio is given by

ϕDK
−1(xk+1 − xk − 1)−1q(z∗k+1|zk)

∏l′−1
l=k+2 q(z

∗
l |zl−2, zl−1, z∗l−1)

ϕEK−1
∏l′−2

l=k+1 q(zl|, z∗l , z∗l+1, zl−1)
.

(E) Delete one IBD transition. First randomly choose k, 2 ≤ k ≤ K. (If K = 1, we do

not change anything.) Set x∗ by deleting xk from x, and set z∗l = zl for l = 1 . . . k− 1.

If k = K we set l′ = K, and if z∗k−1 = zk we set l′ = k. Otherwise, we iteratively

sample z∗l from q(z∗l |zl, zl+1, z
∗
l−1) from l = k until there exists l′ ≥ k so that z∗l′ = zl′+1

or l′ = K. If l′ < K − 1, we set z∗l = zl+1 for l = l′ + 1 . . . K − 1. The target ratio is

p(K − 1,x∗, z∗|·)
p(K,x, z|·)

=

∏
{i|x∗k−1<si<x

∗
l′}
p(yi|Z∗(si), πi, θ, ε)∏

{i|xk−1<si<xl′+1}
p(yi|Z(si), πi, θ, ε)

∏l′−1
l=k−1 p(z

∗
l+1|z∗l , θ)∏l′

l=k−1 p(zl+1|zl, θ)
p (K − 1,x∗)

p(K,x)
,

where the term p(K − 1,x∗)/p(K,x) is replaced by p(K − 1,x∗|λ)/p(K,x|λ) if λ is

sampled (equation S1), p(zK+1|zK , θ) and p(z∗K |z∗K−1, θ) are set to be 1 for l′ = K. The

proposal ratio is given by

ϕE(K − 1)−1
∏l′−1

l=k q(z
∗
l |zl, zl+1, z

∗
l−1)

ϕD(K − 1)−1 (x∗k − x∗k−1 − 1)−1q(zk|z∗k−1)
∏l′

l=k+1 q(zl|z∗l−2, z∗l−1, zl−1)
.

(F) Update segments of IBD states. We first randomly choose one pair of gametes and

partition them into IBD and non-IBD segments. Independently for each non-IBD

13



segment, we propose IBD states by swapping the labels for the pair of gametes. Let k

and l (l > k) be the two ends of the segment so that zk and zl are IBD for the pair of

gametes. We set k = 0 for the first segment, and l = K + 1 for the last segment. The

full conditional distribution is

p({Z(x)}xk+1≤x<xl |·) ∝
∏

{i|xk+1≤si<xl}

p(yi|Z(si), πi, θ, ε),

which does not depend on the IBD transition probabilities. The proposal ratio is 1 for

this symmetric proposal distribution.

In each iteration of a single MCMC, we update θ, λ, ε one by one, update Z(x) 10−5` times

with move types (A-E), and update IBD states n/2 times with move type (F). To improve

the mixing of the MCMC, with probability 0.5 we reverse the direction of the chromosome

in every iteration. When λ is not sampled (equation S1) move types (A-E) are sampled with

probabilities ϕ = ((1 − 2c)/3, (1 − 2c)/3, (1 − 2c)/3, c, c), respectively. Here c is a tunable

constant, and it is set to be 0.2. When λ must also be sampled due to the bounding of K

by Kc, we set c to be a small value of 0.05, as the number of IBD transitions is distributed

sharply around Kc due to the LD in the founder genomes.

We run two independent groups of MCMC chains. In each group there are four MCMC

chains, and parallel algorithms are used where the full conditional distribution is raised to

the power σ,0 < σ ≤ 1 (Metropolis-coupled MCMC, (Geyer 1991)). The power σ is set to

1 for the coldest chain, and decreases with equal interval ∆σ, which is adjusted so that the

accept probability for swapping a pair of chains is 0.5. Only the coldest chain in each group

is saved.
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S5 IBD estimates from large data sets
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Figure S2

Figure S2: Overall recovery of IBD states from long data sets. Estimated IBD states along

gametes obtained from the data sets L-NoLD (left panels) and L-LD (right panels). They

are evaluated in terms of the number of IBD sets (A and B), the pairwise IBD probability

(C and D) and the false positive probability (E and F). Error bars denote the 95posterior

intervals with black lines connecting the medians. In panels A-D, magenta lines denote the

true values. Compare with Figure 5 in the main text.
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