

Figure S1 Structure of the *nox1* gene and derived protein. The 1874 bp gene contains three introns (light grey boxes) and the predicted mature mRNA encodes a protein of 645 aa, containing a highly conserved ferric recuctase-like domain at the N-terminus (dark grey boxes), a ferredoxin reductase like domain (striped dark grew boxes) and six predicted transmembrane domains (light grey boxes). A G810A mutation in sterile mutant pro32 leads to a translational stop at position 222 of the NOX1 protein, resulting in a severely truncated NOX1 lacking the ferredoxin reductase-like domain.

Figure S2 Genomic organization of *nox1* (A), *nox2* (B) and *nor1* (C) loci in wild type and deletion mutants. Primers used for PCR (Table 2) are indicated with small arrows.

Figure S3 Southern hybridisation of single spore isolates (SSI) to verify the deletion of *nox1* (A), *nox2* (B) and *nor1* (C) mutants. Samples were hybridized with *hph* or gene-specific probes as indicated.

Figure S4 Phenotypes of complemented $\Delta nox1$, pro32 and $\Delta nor1$ mutants. (A) Complementation of $\Delta nox1$ and $\Delta nor1$ with the corresponding genes results in normal sexual development. The bar is 50 µm. (B) Hyphal fusion ability of pro32 and $\Delta nor1$ mutants was restored in $\Delta nor1$::nor1 and pro32::nox1 but not in fertile $\Delta nox1$::nox1 complemented strains. Hyphal fusion is indicated by white arrowheads; the lack of hyphal fusion is marked by black arrowheads. The bar is 50 µm. (C) Normal growth was restored in $\Delta nor1$::nor1 as it was in $\Delta nox1$::nox1 complemented strains. Growth was followed in race tubes for 6 days in three replicates.

Figure S5 Restoration of Δnox1 fertility by a serial transfer to BMM medium. (A) Sceme to demonstrate the serial transfer of surface cultures on BMM medium. Strains were grown for 3 d on filter papers and subsequently transferred to fresh BMM media; (B) Growth of strains as indicated after 9 d. Serial transfers were done as depicted in (A); (C) Strains were grown for 9 d on filter papers layered on BMM medium; (D) Same as (C) without filter papers

Figure S6 Expression patterns of protoperithecia are distinct from total mycelial samples. (A) Heatmap of correlation coefficients (Spearman) calculated from normalized read counts for classical analysis from protoperithecial (proto.) and mycelial (myc.) samples. Clustering and heatmap were done in R. (B) Venn diagrams of top 500 genes in different samples. Numbers of genes that are in the top 500 group for one or more or the five samples are given. In this analysis, only reads that map within 100 to 400 bases from the 3' end of the mRNA were used to account for the 3' bias in the microdissection samples and different mRNA lengths. Numbers for the four intersections containing the highest numbers of genes are indicated in white (not counting fields that represent genes occuring in all or only in one group). These intersections are wt mycelia and $\Delta nox1$ mycelia (145), wt protoperithecia and $\Delta nox1$ protoperithecia and pro1 protoperithecia (92), $\Delta nox1$

Files S1-S4

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.159368/-/DC1

File S1 Analysis of raw read counts of *S. macrospora* genes obtained from RNA-seq analysis of mycelia and protoperithecia of $\Delta nox1$, pro1 and wild type.

File S2 Movie 1 Germination of fus spores. Ascospores were inoculated on BMM-Ac at 27°C. Ascospore germination was imaged with 5 min intervals for 60 min and analyzed with MetaMorph (version 7.7.5.0, Universal Imaging) software. Display rate, 1 frame /12 s. Related to Figure 5C.

File S3 Movie 2 Germination of Δnox2/fus spores. Ascospores were inoculated on BMM-Ac at 27°C. Ascospore germination was imaged with 5 min intervals for 60 min and analyzed with MetaMorph (version 7.7.5.0, Universal Imaging) software. Display rate, 1 frame /12 s. Related to Figure 5C.

File S4 Movie 3 Germination of Δgsa3Δnox2/fus spores. Ascospores were inoculated on BMM-Ac at 27°C. Ascospore germination was imaged with 5 min intervals for 60 min and analyzed with MetaMorph (version 7.7.5.0, Universal Imaging) software. Display rate, 1 frame /12 s. Related to Figure 5C.

Sample	Total no. of reads	Read length in bases	Total MB	Coverage	No. of reads mapped to reference genome	% of reads mapped to reference genome
wt_3	108,513,967	51	5534	134x	105,047,645	96.8
pro32/fus	91,404,127	51	4662	114x	89,264,279	97.7

Table S1 Summary of sequence reads generated from mutant and wild type samples

Table S2 Summary of sequence reads generated with RNA-seq analysis in this study

Condition	Sample	No. of reads	No. of reads mapped	% of reads mapped to
condition			to reference genome	reference genome
wild type sexual mycelium	SM10	43,457,800	40,739,279	93.7
Δnox1 sexual mycelium	SM12	48,567,244	46,076,199	95.1
	SM15	58,330,616	55,736,653	95.6
Δnox1 protoperithecia	SM16	71,689,682	65,226,730	91.0
	SM17	65,178,132	60,057,518	92.1

Direction of	S. macrospora locus	Gene designation	Cellular function of the corresponding protein in several		
regulation	tag		organisms		
Genes involved in cytoskeleton remodeling and hyphal fusion					
Upregulated	SMAC_00609	ham-10	Hyphal fusion ^a		
	SMAC_00958	profilin	Profilin binds actin monomers ^b		
	SMAC_02216	cdc42	Regulation of septin ^c , STE20 ^d , NoxA localization ^e , leads		
			to actin assembly and polarized growth in response to		
			pheromones ^f		
	SMAC_02227	crn-1	Establishment of polarity, growth and stable		
			Spitzenkörper ^g		
	SMAC_02633	rts-1	Bud growth, accumulation of G1 cyclin ^h		
	SMAC_04679	rdi1	Recycling of CDC42 ⁱ		
	SMAC_05207	las17	Stabilization of actin patches (endocytosis) ^b		
	SMAC_07118	dynactin 6	Active transport along the microtubules ^{<i>j</i>}		
	SMAC_04212	kinesin	Active transport along the microtubules ^{<i>j</i>}		
	SMAC_06372	kinesin	Active transport along the microtubules ^{<i>j</i>}		
	SMAC_07150	kinesin	Active transport along the microtubules ^{<i>j</i>}		
	SMAC_07711	kinesin	Active transport along the microtubules ^{<i>j</i>}		
Downregulated	SMAC_01612	rax1	Bipolar budding of dipoloid cells ^k		
	SMAC_02720	rsr1/bud1	Localization ¹ and regulation ^m CDC42		
	SMAC_02963	cbk1	Septum disruption after cell division ⁿ		
	SMAC_05949	bem3	GAP of CDC42°		
	SMAC_09273	cofilin	De-polimerization of actin filaments ^p		
Genes involved in u	ubiquitin mediated prote	in degradation or auto	ophagy		
Upregulated	SMAC_01774	ubiquitin-	Ubiquitin binding ^q		
		activating E1 1			
	SMAC_03099	ubiquitin-	Ubiquitin binding ^q		
		conjugating E			
	SMAC_05013	ubiquitin-	Ubiquitin binding ^q		
		conjugating E2 13			
	SMAC_05407	apc5	Protein degradation ^r		
	SMAC_05726	pex4	Ubiquitin binding ^q		
	SMAC_06684	cul-4	Protein degradation ^r		
	SMAC_06747	ubiquitin-protein	Ubiquitin binding ^q		
		ligase gene			
Downregulated	SMAC_06998	atg12	Autophagosome formation ^s		
Genes involved in sexual development					
Upregulated	SMAC_00047	fl	Transcription factor ^t		
	SMAC_02283	pre-1	Pheromone receptor ^a		
	SMAC_05401	SmtA-1	Mating type factor ^v		

Table S3 Cellular functions of differentially regulated genes in Δnox1 protoperithecia compared to wild type protoperithecia

	SMAC_05403	SmtA-3	Mating type factor ^{v}	
Downregulated	SMAC_06479	ste12	Ascospore germination ^w	
Genes involved in mitochondrial respiratory chain				
Upregulated	SMAC_01349	nuo9.5	Subunit of complex I (mitochondrial respiration) ^x	
	SMAC_02450	nuo78	Subunit of complex I (mitochondrial respiration) *	
	SMAC_04043	nuo11.5	Subunit of complex I (mitochondrial respiration ^x	
	SMAC_04093	cytochrome-c	Cytochrome c oxidase of complex III (mitochondrial	
		oxidase chain VIIc	respiration) ^y	
	SMAC_05824	nuo49	Subunit of complex I (mitochondrial respiration) *	
	SMAC_07036	nuo10.4	Subunit of complex I (mitochondrial respiration) *	
	SMAC_07180	nuo21	Subunit of complex I (mitochondrial respiration) *	
	SMAC_08634	nuo14	Subunit of complex I (mitochondrial respiration) *	
Downregulated	SMAC_12686	ATP synthase	Mitochondrial ATPase ^z	
		subunit 6		
	SMAC_12688	ATP synthase	Mitochondrial ATPase ^z	
		subunit 9		

^{*a*}(Fu *et al.* 2011); ^{*b*}(Berepiki *et al.* 2011); ^{*c*}(Dagdas *et al.* 2012); ^{*d*}(Chen and Thorner 2007); ^{*e*}(Semighini and Harris 2008); ^{*f*}(Jones and Bennett 2011); ^{*g*}(Echauri-Espinosa *et al.* 2012); ^{*h*}(Artiles *et al.* 2009); ^{*i*}(Das *et al.* 2013); ^{*j*}(Rank and Rayment 2013); ^{*k*}(Krappmann *et al.* 2007); ^{*f*}(Pulver *et al.* 2013); ^{*m*}(Park *et al.* 1997); ^{*n*}(Brace *et al.* 2011); ^{*o*}(Knaus *et al.* 2007); ^{*p*}(Berepiki and Read 2013); ^{*q*}(Strieter and Korasick 2012); ^{*r*}(van der Veen and Ploegh 2012); ^{*s*}(lino and Noji 2013); ^{*t*}(Bailey and Ebbole 1998); ^{*u*}(Mayrhofer *et al.* 2006); ^{*v*}(Klix *et al.* 2010); ^{*w*}(Nolting and Pöggeler 2006); ^{*x*}(Tanida 2011); ^{*y*}(Duarte and Videira 2000); ^{*z*}(Mayridou *et al.* 2013)

S. macrospora locus	N.crassa locus tag	Gene designation	Gene product	Phenotype of		
tag				N. crassa deletion		
				mutant		
upregulated in Δnox1 protoperithecia compared to wild type protoperithecia						
SMAC_00047	NCU_08726	fl	transcription factor fluffy	sterile ^a		
SMAC_00190	NCU00911	cps1	Polysaccharide synthase	sterile, reduced		
			Cps1p	growth ^a		
SMAC_00609	NCU02833	ham-10	Hyphal anastomosis-10	sterile, reduced		
				growth, cell fusion		
				deficient ^b		
SMAC_02227	NCU00202	crn	Coronin-1	sterile, reduced		
				growth, no polarity		
				during germination ^c		
SMAc_02283	NCU00138	pre-1	Pheromone receptor-1	female sterile ^d		
SMAC_02450	NCU01765	nuo78	NADH:ubiquinone	Reduced perithecia		
			oxidoreductase 78	formation, no		
				ascospore		
				production ^e		
SMAC_04395	NCU04198	cac-1	Chromatin assembly-1	Sterile, reduced		
				growth ^a		
SMAC_05401	NCU01958	matA-1	Mating type protein A-1	sterile, heterokaryon		
				compatible ^f		
SMAC_05403	NCU01960	matA-3	Mating type protein A-3	few ascospores		
				formed ^g		
SMAC_05824	NCU02534	nuo49	NADH:ubiquinone	Sterile, reduced		
			oxidoreductase 49	growth ^e		
SMAC_06177	NCU04001	ff-7	Transcription factor	sterile ^a		
			female fertility-7			
SMAC_06684	NCU00272	cul-4	Cullin-4	sterile, reduced		
				growth ^a		
SMAC_07314	NCU07622		Putative GTPase	sterile ^a		
			activating protein			
SMAC_08994	NCU05758	pre-2	Pheromone receptor-2	sterile, no ascospore		
				formation ^a		
downregulated in Δ nox1 protoperithecia compared to wild type protoperithecia						
SMAC_00010	NCU10142		Putative heterokaryon	sterile ^a		
			incompatibility protein			
SMAC_00177	NCU09211	sad-3	Suppressor of ascus	no ascospore		
			dominance-3	production ^h		
SMAC_01666	NCU09915	fsd-1	Female sexual	sterile, defect in		
			development-1	ascospore		

Table S4 Differentially regulated genes in Δnox1 protoperithecia compared to wild type protoperithecia with an impact on sexual development in *N. crassa*

				maturation ^a
SMAC_02093	NCU07816		Putative magnesium and	sterile ^a
			cobalt transporter CorA	
SMAC_02094	NCU07817	ncw-3	Non-anchored cell wall	sterile, reduced
			protein-3	growth ^a
SMAC_06479	NCU00340	рр-1	protoperithecium-1	sterile, reduced
				growth, ascsospore
				germination defect ⁱ
SMAC_07309	NCU07617	acon-3	Aconidiate-3	sterile ^a
SMAC_07994	NCU08227		Putative glycosyl	sterile ^a
			hydrolase	
SMAC_08793	NCU08739		endothiapepsin	sterile, reduced
				growth ^a
SMAC_12613	NCU07172	stk-8	Serine/threonine protein	sterile, reduced
			kinase-8	growth, defective in
				conidia development ^j

^{*a}Neurospora crassa* Sequencing Project, Broad Institute of Harvard and MIT (<u>http://www.broadinstitute.org/</u>); ^{*b*}(Fu *et al.* 2011); ^{*c*}(Echauri-Espinosa *et al.* 2012); ^{*d*}(Kim and Borkovich 2004); ^{*e*}(Tanida 2011); ^{*f*}(Glass and Lee 1992); ^{*g*}(Ferreira *et al.* 1998); ^{*h*}(Hammond *et al.* 2012); ^{*i*}(Li *et al.* 2005); ^{*j*}(Park *et al.* 2011)</sup>

- Artiles, K., S. Anastasia, D. McCusker, and D. R. Kellogg, 2009 The Rts1 regulatory subunit of protein phosphatase 2A is required for control of G1 cyclin transcription and nutrient modulation of cell size. PLoS Genet. 5: e1000727.
- Bailey, L. A., and D. J. Ebbole, 1998 The *fluffy* gene of *Neurospora crassa* encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148: 1813-1820.
- Berepiki, A., A. Lichius, and N. D. Read, 2011 Actin organization and dynamics in filamentous fungi. Nat. Rev. Microbiol. 9: 876-887.
- Berepiki, A., and N. D. Read, 2013 Septins are important for cell polarity, septation and asexual spore formation in *Neurospora crassa* and show different patterns of localisation at germ tube tips. PLoS One 8: e63843.
- Brace, J., J. Hsu, and E. L. Weiss, 2011 Mitotic exit control of the *Saccharomyces cerevisiae* Ndr/LATS kinase Cbk1 regulates daughter cell separation after cytokinesis. Mol. Cell. Biol. 31: 721-735.
- Chen, R. E., and J. Thorner, 2007 Function and regulation in MAPK signaling pathways: lessons learned from the yeast *Saccharomyces cerevisiae*. Biochim. Biophys. Acta. 1773: 1311-1340.
- Dagdas, Y. F., K. Yoshino, G. Dagdas, L. S. Ryder, E. Bielska *et al.*, 2012 Septin-mediated plant cell invasion by the rice blast fungus, *Magnaporthe oryzae*. Science 336: 1590-1595.
- Das, A., B. D. Slaughter, J. R. Unruh, W. D. Bradford, R. Alexander *et al.*, 2013 Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell. Biol. 14: 304-310.
- Duarte, M., and A. Videira, 2000 Respiratory chain complex I is essential for sexual development in Neurospora and binding of iron sulfur clusters are required for enzyme assembly. Genetics 156: 607-615.
- Echauri-Espinosa, R. O., O. A. Callejas-Negrete, R. W. Roberson, S. Bartnicki-Garcia, and R. R. Mourino-Perez, 2012 Coronin is a component of the endocytic collar of hyphae of *Neurospora crassa* and is necessary for normal growth and morphogenesis. PLoS One 7: e38237.
- Ferreira, A. V., Z. An, R. L. Metzenberg, and N. L. Glass, 1998 Characterization of *mat A-2, mat A-3* and Δ*matA* mating-type mutants of *Neurospora crassa*. Genetics 148: 1069-1079.
- Fu, C., P. Iyer, A. Herkal, J. Abdullah, A. Stout *et al.*, 2011 Identification and characterization of genes required for cell-to-cell fusion in *Neurospora crassa*. Eukaryot. Cell 10: 1100-1109.
- Glass, N. L., and L. Lee, 1992 Isolation of *Neurospora crassa A* mating type mutants by repeat induced point (RIP) mutation. Genetics 132: 125-133.
- Hammond, T. M., D. G. Rehard, H. Xiao, and P. K. Shiu, 2012 Molecular dissection of Neurospora Spore killer meiotic drive elements. Proc. Natl. Acad. Sci. USA 109: 12093-12098.
- lino, R., and H. Noji, 2013 Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics. IUBMB Life 65: 238-246.
- Jones, S. K., Jr., and R. J. Bennett, 2011 Fungal mating pheromones: choreographing the dating game. Fungal Genet. Biol. 48: 668-676.

- Kim, H., and K. A. Borkovich, 2004 A pheromone receptor gene, *pre-1*, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in *Neurospora crassa*. Mol. Microbiol. 52: 1781-1798.
- Klix, V., M. Nowrousian, C. Ringelberg, J. J. Loros, J. C. Dunlap *et al.*, 2010 Functional characterization of *MAT1-1*-specific mating-type genes in the homothallic ascomycete *Sordaria macrospora* provides new insights into essential and nonessential sexual regulators. Eukaryot. Cell 9: 894-905.
- Knaus, M., M. P. Pelli-Gulli, F. van Drogen, S. Springer, M. Jaquenoud *et al.*, 2007 Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. Embo J. 26: 4501-4513.
- Krappmann, A. B., N. Taheri, M. Heinrich, and H. U. Mösch, 2007 Distinct domains of yeast cortical tag proteins Bud8p and Bud9p confer polar localization and functionality. Mol. Biol. Cell 18: 3323-3339.
- Li, D., P. Bobrowicz, H. H. Wilkinson, and D. J. Ebbole, 2005 A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in *Neurospora crassa*. Genetics 170: 1091-1104.
- Mavridou, D. A., M. N. Clark, C. Choulat, S. J. Ferguson, and J. M. Stevens, 2013 Probing heme delivery processes in Cytochrome c biogenesis system I. Biochemistry 52: 7262-7270.
- Mayrhofer, S., J. M. Weber, and S. Pöggeler, 2006 Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete *Sordaria macrospora*. Genetics 172: 1521-1533.
- Nolting, N., and S. Pöggeler, 2006 A STE12 homologue of the homothallic ascomycete *Sordaria macrospora* interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol. Microbiol. 62: 853-868.
- Park, G., J. A. Servin, G. E. Turner, L. Altamirano, H. V. Colot *et al.*, 2011 Global analysis of serine-threonine protein kinase genes in *Neurospora crassa*. Eukaryot. Cell 10: 1553-1564.
- Park, H. O., E. Bi, J. R. Pringle, and I. Herskowitz, 1997 Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl. Acad. Sci. USA 94: 4463-4468.
- Pulver, R., T. Heisel, S. Gonia, R. Robins, J. Norton *et al.*, 2013 Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in *Candida albicans*. Eukaryot. Cell 12: 482-495.
- Rank, K. C., and I. Rayment, 2013 Functional asymmetry in kinesin and dynein dimers. Biol. Cell 105: 1-13.
- Semighini, C. P., and S. D. Harris, 2008 Regulation of apical dominance in *Aspergillus nidulans* hyphae by reactive oxygen species. Genetics 179: 1919-1932.
- Strieter, E. R., and D. A. Korasick, 2012 Unraveling the complexity of ubiquitin signaling. ACS Chem. Biol. 7: 52-63.

Tanida, I., 2011 Autophagosome formation and molecular mechanism of autophagy. Antioxid. Redox Signal. 14: 2201-2214. van der Veen, A. G., and H. L. Ploegh, 2012 Ubiquitin-like proteins. Annu. Rev. Biochem. 81: 323-357.