A. Island model B. Hierarchical island model

C. Stepping-stone model D. Pure drift model

cone JUN

Figure S1 (A) Schematic representation of an island model. The actual data were
simulated with ng = 100 demes, each made of N = 250 diploid individuals (500
genes). Fifty diploid individuals (100 genes) were sampled per deme, in 9 demes. The
migration rate (m = 0.003, plain arrows) was fixed to achieve the desired value of

Fst = 0.24, using equation 6 in Rousset (1996). (B) Schematic representation of a
hierarchical island model. The actual data were simulated with 10 groups of 10
demes, each made of N = 250 diploid individuals (500 genes). Fifty diploid individuals
(100 genes) were sampled per deme, in 3 groups of 3 demes. The migration rate
within (m = 0.017, plain arrows) and among groups (m = 0.0003, dashed arrows)
were fixed to achieve the desired values of Fsc = 0.05, Fcr = 0.05 and Fst = 0.24,
using equations A8—A10 in Excoffier et al. (2009). (C) Schematic representation of a
stepping-stone model. The actual data were simulated with nqy = 100 demes, each
made of N = 250 diploid individuals (500 genes). Fifty diploid individuals (100 genes)
were sampled per deme, in 9 demes.The migration rate was fixed (m = 0.028, plain
arrows), by trial and error, to achieve the desired value of Fst = 0.24. (D) Schematic
representation of a pure drift model. The actual data were simulated with 9 demes,
diverging sequentially as depicted. The sample characteristics (number of individuals,
number of sampled demes) were the same as in (A—C), and the divergence time (24
generations) between any two successive splits was tuned in order to achieve an
overall Fst of = 0.24. In (A-D) 10,000 neutral markers were simulated.
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Figure S2  Analysis of the allele count data from dataset 1. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 1 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 1. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S3  Analysis of the allele count data from dataset 2. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 2 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 2. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S4 Analysis of the allele count data from dataset 3. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 3 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 3. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S5 Analysis of the allele count data from dataset 4. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 4 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 4. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.

6 Sl R. Vitalis et al.



a e
£ < A -
@
g « Directional selection g —
) ™ « Balancing selection
g ,,,,,,, o Neutrality . _._ . _ . _._ ©
> <
kS 3
6 N ('8 < | 4
) o o
(5]
- - o~ : !
4 S i « Directional selection
% . « Balancing selection
Qo o ' « Neutrality
5 © S : \
X T T T T T T T T T T T
0 2000 4000 6000 8000 0 1 2 3 4
Markers Kullback-Leibler divergence (KLD)
8
T N == - i o e e o e o e
] T i
— g ; _ ;
1 —_ < 1
- i S i
i k3] i
o i 8 © i
) i n i
g 9 4 —— False pos. S I AU DU
o 2 = = False neg. (pos. sel.) [ '
= = False neg. (bal. sel.) 9_36 !
e = T e o N [
m i > i
| k<] « Directional selection
<« \ o - ﬁ:l:tr:;:‘iing selection
o ! y
T ' i ' i
g T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
Kullback-Leibler divergence (KLD) Kullback-Leibler divergence (KLD)

Figure S6 Analysis of the allele count data from dataset 6. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 6 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 6. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S7 Analysis of the allele count data from dataset 7. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 7 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 7. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S8 Analysis of the allele count data from dataset 8. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 8 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 8. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S9 Analysis of the allele count data from dataset 9. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 9 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 9. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S10 Analysis of the allele count data from dataset 10. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 10 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 10. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S11  Analysis of the allele count data from dataset 11. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 11 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 11. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.

12 Sl R. Vitalis et al.



A Island model B Hierarchical island model

10
10

08
08

0.6
0.6

= =
1 n
woo | woo
S S
N ~
S S
e | ' < | '
3 ; 3 ;
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Kullback-Leibler divergence (KLD) Kullback-Leibler divergence (KLD)
C Stepping—stone model D Pure drift model
e e
3 i 3
o | ! o |
E E
o | o ]
- ° 1 —
73 : 13
wo | : Lo
=1 0 ©
~ ~
s s
o | ' °
s ; s ;
T T T T T T T T T T T T
0 1 2 3 4 5 o 1 2 3 4 5
Kullback-Leibler divergence (KLD) Kullback-Leibler divergence (KLD)
E F
3
? o
4 3
&
Stepping-sion
L o — Pure drit model ©
s 74 2 °7
- @ @
o - °
2 g 2 27
2 11 z
= 53
o 3 | <
g s £ ey
3] s
2 T T T T T T © T T T T T T
0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0
Kullback-Leibler divergence (KLD) Probability

Figure S12 (A-D) SELESTIM analysis of the datasets from Figure S1. (E) False positive
rate (neutral loci detected as outliers) as a function of the Kullback—Leibler divergence
(KLD) threshold, for the datasets analyzed in (A—D). (F) False positive rate, as a
function of the quantile probability. For each dataset analysis, pseudo-observed data
(pod) are generated from the joint posterior distribution of the model parameters,
using a rejection-sampling algorithm (see File S2). The pod is then analyzed, using the
same MCMC parameters (number and length of pilot runs, burn-in, chain length,
etc.) as for the analysis of the original data. Each quantile probability defines a KLD
threshold, which is used for model choice between selection and neutrality.
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Figure S13  (A-D) BAYESCAN analyses of the datasets from Figure S1, using prior
odds of 10 for the neutral model. (E) False positive rate as a function of the log;,(BF)
threshold. Vertical lines indicate the log;(BF) = 1, log,4(BF) = 1.5 and log,,(BF) = 2

thresholds, which correspond to “strong”, “very strong”” and ““decisive’” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S14  Analysis of the allele count data from datasets 1 and 2. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 1. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 1. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 2. (D) Idem as (B) for dataset 2.
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Figure S15 Analysis of the allele count data from datasets 3 and 4. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 3. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 3. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 4. (D) Idem as (B) for dataset 4.
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Figure S16 Analysis of the allele count data from datasets 6 and 7. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 6. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 6. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 7. (D) Idem as (B) for dataset 7.
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Figure S17  Analysis of the allele count data from datasets 8 and 9. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored” demes (5-6) in dataset 8. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 8. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 9. (D) Idem as (B) for dataset 9.
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Figure S18 Analysis of the allele count data from datasets 10 and 11. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 10. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 10. For “blue”” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 11. (D) Idem as (B) for dataset 11.
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Figure S19 Analysis of the allele count data from a simulation of 50,000 neutral
markers. The simulation was performed according to an island model with ny = 50
“uncolored” demes, each made of N = 250 diploid individuals (500 genes). Samples
were collected in six demes (50 individuals per deme). The migration rate was chosen
to achieve the expected value of Fst = 0.15, using equation 6 in Rousset (1996). The
realized value was Fst = 0.153 (multilocus estimate). (A) Boxplot representation of
the posterior means of the parameters kj; (that indicate which allele is selected for)
for the 50,000 neutral markers in “‘uncolored” demes (1-6). (B) Boxplot
representation of the posterior means of the selection coefficients gj; for the 50,000
neutral markers (unconditional on k;;). The horizontal dotted line indicates the prior
mean g; =1

20 Sl R. Vitalis et al.



o _|
N
<
£
Q
O o ]
t N
m @
o
o
c
o
=1 n _|
[5) —
2 @
[}
%]
3
B o
|
£
S <>
(] o -
] <>
F
o
T T T T T T
0 1000 2000 3000 4000 5000

Number of positively selected loci

Figure S20 Posterior distributions (violin plot representation) of the genome-wide
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used the same parameter as for dataset 5 (see Table 1), but varying the proportion of
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Figure S21 Receiver operating characteristic (ROC) analysis for the same datasets as
in Figure S17 (from left to right, top to bottom). In the ROC analysis, the proportion
of false positives and true positives is computed for each possible value of the
threshold that is used to classify a locus under selection. For SELESTIM, the classifying
variable was the KLD between the posterior distribution of the locus-specific
coefficient of selection §; and its centering distribution, while in the case of BAYESCAN
it was the Bayes factor.
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Figure S22 (A) BAYESCAN Bayes factor for the CEPH dataset analyses, along
chromosome 2. The alleles -13910T and -22018A associated with lactase persistence
are indicated in red. (B) Joint distribution of BAYESCAN Bayes factor and the
Kullback-Leibler divergence (KLD) measure for all loci in the dataset. Markers in
green have KLD > 3.924, which corresponds to the 99.9%-quantile of the of the KLD
distribution from the pod analysis; markers in blue have KLD > 2.772, which
corresponds to the 99.5%-quantile of the of the KLD distribution from the pod
analysis; markers in red have KLD = 2.324, which corresponds to the 99%-quantile of
the of the KLD distribution from the pod analysis. (C) Joint distribution Fst and
BAYESCAN Bayes factor for all loci in the dataset.
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Table S1 False positive rates using two calibration methods

False positive rate (KLD)

Using McCulloch’s (1989) calibration

Using pseudo-observed data

Dataset o =5% a=1% a=0.1% a=5% a=1% a=0.1%
12 0.002 (1.164) 0.000 (1.959) 0.000 (3.108) 2.764 (0.011) 0.374(0.045) 0.026 (0.211)
13 0.000 (1.164) 0.000 (1.959) 0.000 (3.108) 1.226 (0.016) 0.076 (0.076) 0.004 (0.349)
14 0.016 (1.164) 0.010(1.959) 0.002 (3.108) 3.308 (0.035) 0.514(0.174) 0.048 (0.801)
15 0.008 (1.164) 0.000 (1.959) 0.000 (3.108) 1.880(0.091) 0.164 (0.434) 0.002 (1.520)
16 0.068 (1.164) 0.008 (1.959) 0.000 (3.108) 1.722 (0.247) 0.194 (0.853) 0.008 (2.019)
17 0.140 (1.164) 0.020(1.959) 0.000 (3.108) 1.712 (0.374) 0.186 (1.047) 0.022 (1.942)
18 0.182(1.164) 0.010(1.959) 0.000 (3.108) 1.478 (0.521) 0.178(1.179) 0.010 (1.948)

SelEstim analyses of datasets 12—18. Left-hand side: proportion (%) of markers that were classified as outliers, using the threshold KLD = 1.164, 1.959
and 3.108, which equal the KLD between two Bernoulli distributions corresponding to flipping a fair coin and a biased coin that gives a head with
probability 0.05, 0.01 and 0.001, respectively. Right-hand side: proportion (%) of markers that were classified as outliers, using the calibration based
on pseudo-observed data (pod). For each dataset and each analysis, a rejection sampling algorithm (see File S2) is used to generate a pod from the
joint posterior distribution of the model parameters. The quantiles of the KLD distribution from the pod analysis are then used to calibrate the KLD:
the (1 - a)%-quantile of the KLD distribution from the pod analysis provides a a%-threshold KLD value, which is then used for model choice between
selection and neutrality.

R. Vitalis et al.
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File S1
Details on the componentwise Markov chain Monte Carlo algorithm

Here we provide the computational details for the componentwise Markov chain Monte
Carlo updates. Our aimis to sample from the joint posterior distribution of f(M, 7, k, 0, §, A|n),
which is specified by equation (4) and by the directed acyclic graph (DAG) in Figure 1.
To do so, we use a combination of the Metropolis—Hastings algorithm and the Gibbs
sampler for generating observations from f(M, 7, k, 0,0, A|n) using outputs from a

Markov chain (see, e.g., Gelman et al. 2004).

Each Markov chain is initialized with random values of the parameters drawn from
their prior densities, except for the parameters p, ;, for which the observed frequencies
are used, and the parameters ;S for which the Laplace values are calculated from the
dataset frequencies. The updating sequence is as follows: (i) all Ln; parameters p, ;;
(i) all n 4 parameters M; (iii) all L parameters 7 ;; (iv) the hyperparameter A; (v) all L

hyperparameters 6 (vi) all Ln g parameters o, ;; (vii) all Ln, parameters r, ;. Since

1]1
the full posterior distribution of the model can be decomposed as a product over loci
and over populations (see equation 4), each update only requires the re-computation
of the relevant terms of the distribution f(M, 7, k, 0, 4, A|n). This improves the com-

putational efficiency of the algorithm considerably.

The confluent hypergeometric, or Kummer’s, functions | F (a; b; z) (see, e.g., Abramowitz
and Stegun 1965, p. 504) were computed following a procedure proposed by Pearson

(Pearson 2009), which is based on the power series definition of the function:

‘ N

LFy(a;b; 2) Z (Z— (51.1)

J=0
h_\,—/

J

b

where, for some parameter p, the Pochhammer symbol (p) ; is defined as:

Po=1, (),;=pp+1)(p+j—1), forj=1,2,... (S1.2)

The computation of the terms of the power series in equation (S1.1) can then be car-

26 Sl R. Vitalis et al.



ried out using the following procedure:

Ay =5,=1,
A a+j =z

— A S1.3
J+1 Jb+jj+17 ( )

SJ+1:S]+AJ+17 forj:1,2,...

where Aj represents the (j+ 1)th term of the power series in equation (S1.1), and Sj
represents the sum of the first (j+1) terms. The computation was stopped when both
|[AnI/ISn_1] < 10712 and [An, 1|/|Sn| < 10712, This criterion is equivalent to
truncating the series in equation (S1.1), and requires that two consecutive terms to be

small compared to the sum already computed.

Updating p; ;: The parameters p, ; are updated iteratively in each deme, one locus at
a time. In the ith deme, at locus j, one allele is chosen at random from a Bernoulli
trial with probability 0.5. The new allele frequency p;j is chosen as a random variable

drawn from a uniform distribution around the current value p, ;:
Pij ~ Ulpij —Dpipij +1,). (51.4)

The size of the interval Ap is a constant, which is adjusted during 25 short pilot runs
of 1,000 iterations, in order to get acceptance rates between 0.25 and 0.40 (see, e.g.,
Gilks et al. 1996). Since p, ; is a frequency comprised between 0 and 1, ifpgj is outside
the interval [0, 1], the excess is reflected back into the interval; that is, if p; ; < 0 then
p;; is reset to its absolute value |p;;|, and if p;; > 1 then p;, is reset to 2 — p;..
This proposal is symmetric (Yang 2005). The updated allele frequency pgj is therefore

accepted according to the appropriate Metropolis probability, which reads:

‘(P;JG nij)’(/}(p;j; M;, T Fv'ij»Uz‘j)
0'.

. (51.5)
L(pi i) Y(pizs My, w5, K45,055)
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Equation (S1.5) can be rewritten as

/,g?ij+M737rj_1(1 —p! ,)(nm_mij)qu'i'(l—ﬂ'j)_l
1= ij ij
1/\eXP [sz (ng ng)] miy+Mi7Tj_1(1 B )(nij—mij)Mi+(1—7Tj)—1 s (516)
ij Dij : : :

where p}; = k(1 —p};) + (1 — K;5)p} 5

Updating M, : The parameters M, are updated iteratively, one deme at a time. The
proposed value M is drawn from a lognormal distribution with median equal to the
current value M, i.e.:

q(M; — M;) =

1
My V2r P ( 202,
where v, is the standard deviation on the log scale. The standard deviation v, is
a constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order
to get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule
is asymmetric, a Metropolis—Hastings update is required in which the Metropolis ra-
tio is weighted by the ratio of the forward and reverse proposal densities (which is
sometimes referred to as the ““Hastings term”’: see, e.g., Gelman et al. 2004, p. 291).
This means that when some moves are more likely to happen (because of the asym-
metry of the proposal distribution), their probability of acceptance is decreased pro-
portionately. Here, the ratio ¢(M, — M,)/q(M; — M}) reduces to M /M,. In
order to avoid computational problems with excessively small or large M, values, all
moves falling outside the interval [0.0011, 000] are discarded (i.e., the chain is kept un-
changed). Otherwise, the proposed value M is accepted according to the appropriate
Metropolis—Hastings probability, which is:
12, Uiy M g i) | SO a(M; — 0)

T2 (o3 Moy, 05045)] SO (M — M3)

1A

(51.8)
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Equation (51.8) can be rewritten as

Mﬂ'

1/\[F(Mi)] L Hle F(Mﬂj)r(]\/[ (1—m; )) Fl(MﬂzjaM Uzg)P” (1 _Pij)M’/"(liﬁj)
/ . .
I(M7) Hle D(Mim)D(My(1 — 7)), Fy (M7, 53 M J”)p” (1 = py) M)

(51.9)

Updating 7;: The parameters 7; are updated iteratively, one locus at a time. In the ith
deme, at locus 7, one allele is chosen at random from a Bernoulli trial with probability
0.5. The proposed allele frequency 773. is chosen as a random variable drawn from a
uniform distribution around the current value 7 ;:

wh~U(my—Ap,mi+AL). (51.10)

7 g

The size of the interval A__is a constant, which is adjusted during 25 short pilot runs of
1,000 iterations, in order to get acceptance rates between 0.25 and 0.40. Since ; is
a frequency comprised between 0 and 1, if 779 is outside the interval [0, 1], the excess
is reflected back into the interval; that is, if ﬂ'J < 0 then 7r is reset to its absolute
value |7r9\, and if 7T;~ > 1 then 7r;- is reset to 2 — 773-. This proposal is symmetric, and
the updated allele frequency 7r;- is therefore accepted according to the appropriate

Metropolis probability, which reads:

17, 0pss Mis )i 05)] ()

1A .
{Hnd qu(ngvau'/TJaHzga ’LJ):| f(,/Tj)

(S1.11)

Equation (51.11) can be rewritten as

M,[ﬂ'; (1 — 7

1/\H 1P(M i T 5 )P(Mi(]- _Wj))lFl(Mz ”»M o; )pij 1 _Pij)M"(l 3
M, =, 1—n’

Hl_l (M T )F(Mi(lfﬁg‘)hFl(Mz ”»M 0, )pij J(lfpz‘j)Ml(l 2

(S1.12)

where 7} ; = £, (1 — %) + (1 — K, ;)7
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Updating \: The proposed value of the hyperparameter )\’ is drawn from a lognormal

distribution with median equal to the current value ), i.e.:

_ / 2
GV = — exp ( ln()‘2//\) > , (51.13)
)\/VA vV 2'IT 21/A

where v, is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio g(\" — X)/g(A — X’) reduces to A’/X. In order to avoid compu-
tational problems with excessively small or large )\’ values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value )\ is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:

T2, 5, W)] SOV IA)a(Y — )

j=1

1A T . (S1.14)
[T, 76,10] FOA)a(x = )
Equation (S1.14) can be rewritten as
L
A L-1 P Zj:l 53' 1

Updating ¢,: The parameters ¢, are updated iteratively, one locus at a time. The
proposed value of the hyperparameters (5;- is drawn from a lognormal distribution with

median equal to the current value § , i.e.:

q(0; — (53)

(51.16)

1 —ln(é}/dj)Q
(S‘/jl/é\/ 271' 2”5
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where v is the standard deviation on the log scale. The standard deviation v is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio ¢(6; — 6,)/q(d; — d’;) reduces to &’ /d;. In order to avoid compu-
tational problems with excessively small or large 6j values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value 5;- is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:

17, flo03185)] £ INa(); — 6,)
I17, f(o516,)] £5,N)a(3, — o)

T

1A

(51.17)

Equation (51.17) can be rewritten as

ng—1
5\ ° Yooy 1
I = exp [(54 —6,) <1=1 J _ )] (51.18)
(5;) i 5,0 A

Updating 0,4t The parameters 0;;are updated iteratively in each deme, one locus at
atime. In the ith deme, at locus j, the proposed value of the parameters agj is drawn

from a lognormal distribution with median equal to the current value o, ., i.e.:

ij

Q(Uij - U;j) = (51.19)

1 _ln(a';;j/aij)2
s (55)
where v is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio is

weighted by the ratio of the forward and reverse proposal densities. This means that
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when some moves are more likely to happen (because of the asymmetry of the pro-
posal distribution), their probability of acceptance is decreased proportionately. Here,
the ratio ¢(o; — 0,;)/q(0;; — o7;) reduces to o} ; /0, ;. In order to avoid computa-
tional problems with excessively small or large 054 values, all moves falling outside the
interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the pro-

posed value agj is accepted according to the appropriate Metropolis—Hastings proba-

bility, which is:
V(p; M, 7TjaHijaglij)f(glijwj)q(o';j - O';ij). (51.20)
V(055 My, 75, 6,5,0,5) f(0,5105)q(0;; — Uij)

Equation (51.20) can be rewritten as
%4 e [(g/. —0.) (73. S 1)} LIy (M5 My 0) (s1.21)
Oij * “ Y 9, 1F1(Mi7~rij§Mi§U§j)

Updating K;jt The parameters K;j are updated iteratively in each deme, one locus

at a time. In the 7th deme, at locus j, the variable «, ;, which indicates which of the

ijr
two alleles is selected for, is updated using Gibbs sampling based on the conditional

posterior distribution:

f(’%ij|9[fnij]) o PPy 55 My iy K45, 055) f(Ki5), (51.22)

where 0{_ represents all the model parameters but , ;. Since x;; can only take

i
K 7}

two integer values (0 and 1), it can be shown that:

1 exp [0;p;,]
Pr(k;; =0|0;_, 1) < = 127 , (S1.23)
! (=i 2 |y (Mymys My o45)
and
1 exp [Gij(l _pij)]
Pr(k;,; =116;_, 1) x = . (51.24)
/ [=ris] 2 |1 Fy (M, (1 *Wj)§Mi§0ij)
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Therefore, the conditional posterior distribution of (Hij |9[ ) from equation (51.22)

—ﬂi,‘]

can be rewritten as
(Fvijw[—w) ~ Bernoulli (p) (51.25)

where

Pr("%’j = 0|9[—n”])

P =
Pr('%ij = 0|9[_NLJ]) + PI‘(K,I-]- = 1|6[_NLJ])
Fy (M7, : M;;0,)) -
I 11\ T 55 45 045 (1 =2p. . . (S1.26
" 1F1(Mi(1—Wij)?Mi;Uij)exp 735 pia) ( )
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File S2
Details on the algorithm to sample from the inference model

In order to provide a decision criterion for discriminating between neutral and selected
markers, we calibrate the Kullback-Leibler divergence (KLD) using simulations from
a predictive distribution based on the observed data set. To that end, we generate
pseudo-observed data as follows.

We set the hyperparameters M, ; and ) to their respective posterior means Mi,
; and )\, as estimated from the MCMC. Then we draw 6j from an exponential distri-
bution ~ exp(A~!) and we draw o, ; from an exponential distribution ~ exp (6;71).
Last, the parameter Ki;is drawn from a Bernoulli distribution (with parameter the
posterior mean £, ;).

We aim at sampling the allele frequency Pij from the distribution with density
f(p;;) defined by equations 2 and 3 in the main text. Because the cumulative dis-
tribution function of the distribution with density f(p;;) is not tractable, we use a

rejection-sampling algorithm. To that end, we define an instrumental distribution

9(p;;) ~ Beta(M;m;, M;(1 — 7)), with density:

_ L'(M;) Mimg—1
9(piz) = L(M;m;)T(M,; (1 — Wj))pij

(1—p;)Mi=m) =1 (s2.1)

We further need to define a constant v, such that f(p, ;) < [ug(p, ;)] over the support

[0, 1]. Noting that:

.. explo. D :
fpig) _ P(7iPi) (52.2)
g(pij) 1F1(Mz‘7rij§Mi§0ij)
then, if we define u = exp(0, ;) /1 Fy (M;7,;;; M;; 0, ;) we get:
f(pij)
LPis)  xp(o,y(ps; — 1)) (52.3)
UQ(Pij) I

Since 0 < p,; < land o;; > 0, by definition, we have exp(c,,;(p;; — 1)) < 1

and therefore f(p;;) < [ug(p;;)]- A straightforward algorithm to sample from the

distribution with density f(p, ;) is then:
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(1) Sample x from a beta distribution Beta(M, 7 ;, M, (1 —m;)) and y from 2/ (0,1)

(the uniform distribution over the unit interval).

(2) Check whether or not y < f(z)/[ug(x)] or equivalently (see equation $2.3) if

log(y) < 0;;(p;; — 1)
e If this holds, accept 2 and set p, ; = z;

e if not, reject the value of x and repeat the sampling step (1).
(3) Compute p,; = P;;(1 — k) + (1 — D)k,

Finally, we draw the allele counts n; ; in the ith deme at the jth locus by arandom draw
from the binomial distribution ~ B(n, ;, p; ;). We repeat this procedure for each locus
jin each demei.
This algorithm is computationally efficient, since it avoids computing ; Iy (M, 7, ;; M;; 0, ;)

(see equations 2 and 3 in the main text). However, the efficiency of the algorithm may
be very low for large values of o, ;. This is so because the expected number of iter-
ations required until an x is successfully generated is exactly the bounding constant
u = exp(0,;)/1F (M;7;;; M;;0,,;). Therefore, to avoid the algorithm getting stuck
in very long loops, we adopt an alternative strategy whenever u > 10%: in such case,
we draw z from a beta distribution Beta(c, ) with the same first two moments as

the target distribution (equations 2 and 3 in the main text). Little algebra shows that:

a=mq(my —my)/(m? —my)and 3= a(l/m; — 1), where

— 1y (M7, + 15 M + 15045) (52.4)
! * 1F1(Mz‘7~rij%Mi;Jij)
and
2 * M; +1 1F1(Miﬁ'ij§Mi§Uz’j)
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