File S1
Details on the componentwise Markov chain Monte Carlo algorithm

Here we provide the computational details for the componentwise Markov chain Monte
Carlo updates. Our aimis to sample from the joint posterior distribution of f(M, 7, k, 0, §, A|n),
which is specified by equation (4) and by the directed acyclic graph (DAG) in Figure 1.
To do so, we use a combination of the Metropolis—Hastings algorithm and the Gibbs
sampler for generating observations from f(M, 7, k, 0,0, A|n) using outputs from a

Markov chain (see, e.g., Gelman et al. 2004).

Each Markov chain is initialized with random values of the parameters drawn from
their prior densities, except for the parameters p, ;, for which the observed frequencies
are used, and the parameters ;S for which the Laplace values are calculated from the
dataset frequencies. The updating sequence is as follows: (i) all Ln; parameters p, ;;
(i) all n 4 parameters M; (iii) all L parameters 7 ;; (iv) the hyperparameter A; (v) all L

hyperparameters 6 (vi) all Ln g parameters o, ;; (vii) all Ln, parameters r, ;. Since

1]1
the full posterior distribution of the model can be decomposed as a product over loci
and over populations (see equation 4), each update only requires the re-computation
of the relevant terms of the distribution f(M, 7, k, 0, 4, A|n). This improves the com-

putational efficiency of the algorithm considerably.

The confluent hypergeometric, or Kummer’s, functions | F (a; b; z) (see, e.g., Abramowitz
and Stegun 1965, p. 504) were computed following a procedure proposed by Pearson

(Pearson 2009), which is based on the power series definition of the function:
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where, for some parameter p, the Pochhammer symbol (p) ; is defined as:

Po=1, (),;=pp+1)(p+j—1), forj=1,2,... (S1.2)

The computation of the terms of the power series in equation (S1.1) can then be car-
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ried out using the following procedure:

Ay =5,=1,
A a+j =z

— A S1.3
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SJ+1:S]+AJ+17 forj:1,2,...

where Aj represents the (j+ 1)th term of the power series in equation (S1.1), and Sj
represents the sum of the first (j+1) terms. The computation was stopped when both
|[AnI/ISn_1] < 10712 and [An, 1|/|Sn| < 10712, This criterion is equivalent to
truncating the series in equation (S1.1), and requires that two consecutive terms to be

small compared to the sum already computed.

Updating p; ;: The parameters p, ; are updated iteratively in each deme, one locus at
a time. In the ith deme, at locus j, one allele is chosen at random from a Bernoulli
trial with probability 0.5. The new allele frequency p;j is chosen as a random variable

drawn from a uniform distribution around the current value p, ;:
Pij ~ Ulpij —Dpipij +1,). (51.4)

The size of the interval Ap is a constant, which is adjusted during 25 short pilot runs
of 1,000 iterations, in order to get acceptance rates between 0.25 and 0.40 (see, e.g.,
Gilks et al. 1996). Since p, ; is a frequency comprised between 0 and 1, ifpgj is outside
the interval [0, 1], the excess is reflected back into the interval; that is, if p; ; < 0 then
p;; is reset to its absolute value |p;;|, and if p;; > 1 then p;, is reset to 2 — p;..
This proposal is symmetric (Yang 2005). The updated allele frequency pgj is therefore

accepted according to the appropriate Metropolis probability, which reads:

‘(P;JG nij)’(/}(p;j; M;, T Fv'ij»Uz‘j)
0'.

. (51.5)
L(pi i) Y(pizs My, w5, K45,055)

R. Vitalis et al. 27 Sl



Equation (S1.5) can be rewritten as

/,g?ij+M737rj_1(1 —p! ,)(nm_mij)qu'i'(l—ﬂ'j)_l
1= ij ij
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where p}; = k(1 —p};) + (1 — K;5)p} 5

Updating M, : The parameters M, are updated iteratively, one deme at a time. The
proposed value M is drawn from a lognormal distribution with median equal to the
current value M, i.e.:

q(M; — M;) =

1
My V2r P ( 202,
where v, is the standard deviation on the log scale. The standard deviation v, is
a constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order
to get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule
is asymmetric, a Metropolis—Hastings update is required in which the Metropolis ra-
tio is weighted by the ratio of the forward and reverse proposal densities (which is
sometimes referred to as the ““Hastings term”’: see, e.g., Gelman et al. 2004, p. 291).
This means that when some moves are more likely to happen (because of the asym-
metry of the proposal distribution), their probability of acceptance is decreased pro-
portionately. Here, the ratio ¢(M, — M,)/q(M; — M}) reduces to M /M,. In
order to avoid computational problems with excessively small or large M, values, all
moves falling outside the interval [0.0011, 000] are discarded (i.e., the chain is kept un-
changed). Otherwise, the proposed value M is accepted according to the appropriate
Metropolis—Hastings probability, which is:
12, Uiy M g i) | SO a(M; — 0)

T2 (o3 Moy, 05045)] SO (M — M3)
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(51.8)
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Equation (51.8) can be rewritten as

Mﬂ'
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(51.9)

Updating 7;: The parameters 7; are updated iteratively, one locus at a time. In the ith
deme, at locus 7, one allele is chosen at random from a Bernoulli trial with probability
0.5. The proposed allele frequency 773. is chosen as a random variable drawn from a
uniform distribution around the current value 7 ;:

wh~U(my—Ap,mi+AL). (51.10)

7 g

The size of the interval A__is a constant, which is adjusted during 25 short pilot runs of
1,000 iterations, in order to get acceptance rates between 0.25 and 0.40. Since ; is
a frequency comprised between 0 and 1, if 779 is outside the interval [0, 1], the excess
is reflected back into the interval; that is, if ﬂ'J < 0 then 7r is reset to its absolute
value |7r9\, and if 7T;~ > 1 then 7r;- is reset to 2 — 773-. This proposal is symmetric, and
the updated allele frequency 7r;- is therefore accepted according to the appropriate

Metropolis probability, which reads:

17, 0pss Mis )i 05)] ()
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(S1.11)

Equation (51.11) can be rewritten as

M,[ﬂ'; (1 — 7
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(S1.12)

where 7} ; = £, (1 — %) + (1 — K, ;)7
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Updating \: The proposed value of the hyperparameter )\’ is drawn from a lognormal

distribution with median equal to the current value ), i.e.:

_ / 2
GV = — exp ( ln()‘2//\) > , (51.13)
)\/VA vV 2'IT 21/A

where v, is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio g(\" — X)/g(A — X’) reduces to A’/X. In order to avoid compu-
tational problems with excessively small or large )\’ values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value )\ is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:

T2, 5, W)] SOV IA)a(Y — )
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1A T . (S1.14)
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Equation (S1.14) can be rewritten as
L
A L-1 P Zj:l 53' 1

Updating ¢,: The parameters ¢, are updated iteratively, one locus at a time. The
proposed value of the hyperparameters (5;- is drawn from a lognormal distribution with

median equal to the current value § , i.e.:

q(0; — (53)

(51.16)
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where v is the standard deviation on the log scale. The standard deviation v is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio ¢(6; — 6,)/q(d; — d’;) reduces to &’ /d;. In order to avoid compu-
tational problems with excessively small or large 6j values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value 5;- is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:
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Equation (51.17) can be rewritten as

ng—1
5\ ° Yooy 1
I = exp [(54 —6,) <1=1 J _ )] (51.18)
(5;) i 5,0 A

Updating 0,4t The parameters 0;;are updated iteratively in each deme, one locus at
atime. In the ith deme, at locus j, the proposed value of the parameters agj is drawn

from a lognormal distribution with median equal to the current value o, ., i.e.:

ij

Q(Uij - U;j) = (51.19)

1 _ln(a';;j/aij)2
s (55)
where v is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio is

weighted by the ratio of the forward and reverse proposal densities. This means that
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when some moves are more likely to happen (because of the asymmetry of the pro-
posal distribution), their probability of acceptance is decreased proportionately. Here,
the ratio ¢(o; — 0,;)/q(0;; — o7;) reduces to o} ; /0, ;. In order to avoid computa-
tional problems with excessively small or large 054 values, all moves falling outside the
interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the pro-

posed value agj is accepted according to the appropriate Metropolis—Hastings proba-

bility, which is:
V(p; M, 7TjaHijaglij)f(glijwj)q(o';j - O';ij). (51.20)
V(055 My, 75, 6,5,0,5) f(0,5105)q(0;; — Uij)

Equation (51.20) can be rewritten as
%4 e [(g/. —0.) (73. S 1)} LIy (M5 My 0) (s1.21)
Oij * “ Y 9, 1F1(Mi7~rij§Mi§U§j)

Updating K;jt The parameters K;j are updated iteratively in each deme, one locus

at a time. In the 7th deme, at locus j, the variable «, ;, which indicates which of the

ijr
two alleles is selected for, is updated using Gibbs sampling based on the conditional

posterior distribution:

f(’%ij|9[fnij]) o PPy 55 My iy K45, 055) f(Ki5), (51.22)

where 0{_ represents all the model parameters but , ;. Since x;; can only take

i
K 7}

two integer values (0 and 1), it can be shown that:

1 exp [0;p;,]
Pr(k;; =0|0;_, 1) < = 127 , (S1.23)
! (=i 2 |y (Mymys My o45)
and
1 exp [Gij(l _pij)]
Pr(k;,; =116;_, 1) x = . (51.24)
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Therefore, the conditional posterior distribution of (Hij |9[ ) from equation (51.22)

—ﬂi,‘]

can be rewritten as
(Fvijw[—w) ~ Bernoulli (p) (51.25)

where

Pr("%’j = 0|9[—n”])

P =
Pr('%ij = 0|9[_NLJ]) + PI‘(K,I-]- = 1|6[_NLJ])
Fy (M7, : M;;0,)) -
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