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Details on the componentwise Markov chain Monte Carlo algorithm

Hereweprovide the computational details for the componentwiseMarkov chainMonte

Carlo updates. Our aim is to sample from the joint posterior distributionof 𝑓(𝐌, 𝜋, 𝜅, 𝜎, 𝛿, 𝜆|𝐧),

which is specified by equation (4) and by the directed acyclic graph (DAG) in Figure 1.

To do so, we use a combination of the Metropolis–Hastings algorithm and the Gibbs

sampler for generating observations from 𝑓(𝐌, 𝜋, 𝜅, 𝜎, 𝛿, 𝜆|𝐧) using outputs from a

Markov chain (see, e.g., Gelman et al. 2004).

Each Markov chain is initialized with random values of the parameters drawn from

their prior densities, except for the parameters 𝑝𭑖𭑗, forwhich the observed frequencies

are used, and the parameters 𝜋𭑗s, for which the Laplace values are calculated from the

dataset frequencies. The updating sequence is as follows: (i) all 𝐿𝑛𭑑 parameters 𝑝𭑖𭑗;

(ii) all 𝑛𭑑 parameters 𝑀𭑖; (iii) all 𝐿 parameters 𝜋𭑗; (iv) the hyperparameter 𝜆; (v) all 𝐿

hyperparameters 𝛿𭑗; (vi) all 𝐿𝑛𭑑 parameters 𝜎𭑖𭑗; (vii) all 𝐿𝑛𭑑 parameters 𝜅𭑖𭑗. Since

the full posterior distribution of the model can be decomposed as a product over loci

and over populations (see equation 4), each update only requires the re-computation

of the relevant terms of the distribution 𝑓(𝐌, 𝜋, 𝜅, 𝜎, 𝛿, 𝜆|𝐧). This improves the com-

putational efficiency of the algorithm considerably.

The confluent hypergeometric, or Kummer's, functions 1𝐹1(𝑎; 𝑏; 𝑧) (see, e.g., Abramowitz

and Stegun 1965, p. 504) were computed following a procedure proposed by Pearson

(Pearson 2009), which is based on the power series definition of the function:

1𝐹1(𝑎; 𝑏; 𝑧) =
∞
�
𭑗=0

(𝑎)𭑗

(𝑏)𭑗

𝑧𭑗

𝑗!⏟⏟⏟⏟⏟
𭐴𭑗

, (S1.1)

where, for some parameter 𝑝, the Pochhammer symbol (𝑝)𭑗 is defined as:

(𝑝)0 = 1, (𝑝)𭑗 = 𝑝(𝑝 + 1) … (𝑝 + 𝑗 − 1), for 𝑗 = 1, 2, … . (S1.2)

The computation of the terms of the power series in equation (S1.1) can then be car-
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ried out using the following procedure:

𝐴0 = 𝑆0 = 1,

𝐴𭑗+1 = 𝐴𭑗
𝑎 + 𝑗
𝑏 + 𝑗

𝑧
𝑗 + 1

, (S1.3)

𝑆𭑗+1 = 𝑆𭑗 + 𝐴𭑗+1, for 𝑗 = 1, 2, …

where 𝐴𭑗 represents the (𝑗+1)th term of the power series in equation (S1.1), and 𝑆𭑗

represents the sumof the first (𝑗+1) terms. The computationwas stoppedwhen both

|𝐴𭑁|/|𝑆𭑁−1| < 10−12 and |𝐴𭑁+1|/|𝑆𭑁| < 10−12. This criterion is equivalent to

truncating the series in equation (S1.1), and requires that two consecutive terms to be

small compared to the sum already computed.

Updating 𝑝𭑖𭑗: The parameters 𝑝𭑖𭑗 are updated iteratively in each deme, one locus at

a time. In the 𝑖th deme, at locus 𝑗, one allele is chosen at random from a Bernoulli

trial with probability 0.5. The new allele frequency 𝑝′
𭑖𭑗 is chosen as a random variable

drawn from a uniform distribution around the current value 𝑝𭑖𭑗:

𝑝′
𭑖𭑗 ∼ 𝑈 (𝑝𭑖𭑗 − Δ𭑝, 𝑝𭑖𭑗 + Δ𭑝) . (S1.4)

The size of the interval Δ𭑝 is a constant, which is adjusted during 25 short pilot runs

of 1,000 iterations, in order to get acceptance rates between 0.25 and 0.40 (see, e.g.,

Gilks et al.1996). Since 𝑝𭑖𭑗 is a frequency comprised between 0 and 1, if 𝑝′
𭑖𭑗 is outside

the interval [0, 1], the excess is reflected back into the interval; that is, if 𝑝′
𭑖𭑗 < 0 then

𝑝′
𭑖𭑗 is reset to its absolute value |𝑝′

𭑖𭑗|, and if 𝑝′
𭑖𭑗 > 1 then 𝑝′

𭑖𭑗 is reset to 2 − 𝑝′
𭑖𭑗.

This proposal is symmetric (Yang 2005). The updated allele frequency 𝑝′
𭑖𭑗 is therefore

accepted according to the appropriate Metropolis probability, which reads:

1 ∧
ℒ(𝑝′

𭑖𭑗; 𝐧𭑖𭑗)𝜓(𝑝′
𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)

ℒ(𝑝𭑖𭑗; 𝐧𭑖𭑗)𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)
. (S1.5)
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Equation (S1.5) can be rewritten as

1∧exp [𝜎𭑖𭑗 (𝑝̃′
𭑖𭑗 − 𝑝̃𭑖𭑗)]

𝑝′𭑥𭑖𭑗+𭑀𭑖𭜋𭑗−1
𭑖𭑗 (1 − 𝑝′

𭑖𭑗)(𭑛𭑖𭑗−𭑥𭑖𭑗)𭑀𭑖+(1−𭜋𭑗)−1

𝑝𭑥𭑖𭑗+𭑀𭑖𭜋𭑗−1
𭑖𭑗 (1 − 𝑝𭑖𭑗)(𭑛𭑖𭑗−𭑥𭑖𭑗)𭑀𭑖+(1−𭜋𭑗)−1

, (S1.6)

where 𝑝̃′
𭑖𭑗 ≡ 𝜅𭑖𭑗(1 − 𝑝′

𭑖𭑗) + (1 − 𝜅𭑖𭑗)𝑝′
𭑖𭑗.

Updating 𝑀𭑖: The parameters 𝑀𭑖 are updated iteratively, one deme at a time. The

proposed value 𝑀′
𭑖 is drawn from a lognormal distribution with median equal to the

current value 𝑀𭑖, i.e.:

𝑞(𝑀𭑖 → 𝑀′
𭑖) = 1

𝑀′
𭑖𝜈𭑀

√
2𝜋

exp (− ln(𝑀′
𭑖/𝑀𭑖)2

2𝜈2
𭑀

) , (S1.7)

where 𝜈𭑀 is the standard deviation on the log scale. The standard deviation 𝜈𭑀 is

a constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order

to get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule

is asymmetric, a Metropolis–Hastings update is required in which the Metropolis ra-

tio is weighted by the ratio of the forward and reverse proposal densities (which is

sometimes referred to as the ``Hastings term'': see, e.g., Gelman et al. 2004, p. 291).

This means that when some moves are more likely to happen (because of the asym-

metry of the proposal distribution), their probability of acceptance is decreased pro-

portionately. Here, the ratio 𝑞(𝑀′
𭑖 → 𝑀𭑖)/𝑞(𝑀𭑖 → 𝑀′

𭑖) reduces to 𝑀′
𭑖/𝑀𭑖. In

order to avoid computational problems with excessively small or large 𝑀𭑖 values, all

moves falling outside the interval [0.0011, 000] are discarded (i.e., the chain is kept un-

changed). Otherwise, the proposed value𝑀′
𭑖 is accepted according to the appropriate

Metropolis–Hastings probability, which is:

1 ∧
[∏𭐿

𭑗=1 𝜓(𝑝𭑖𭑗; 𝑀′
𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)] 𝑓(𝑀′

𭑖)𝑞(𝑀′
𭑖 → 𝑀𭑖)

[∏𭐿
𭑗=1 𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)] 𝑓(𝑀𭑖)𝑞(𝑀𭑖 → 𝑀′

𭑖)
. (S1.8)
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Equation (S1.8) can be rewritten as

1∧[Γ(𝑀𭑖)
Γ(𝑀′

𭑖)
]

𭐿 ∏𭐿
𭑗=1 Γ(𝑀𭑖𝜋𭑗)Γ(𝑀𭑖(1 − 𝜋𭑗))1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)𝑝𭑀′

𭑖𭜋𭑗
𭑖𭑗 (1 − 𝑝𭑖𭑗)𭑀′

𭑖(1−𭜋𭑗)

∏𭐿
𭑗=1 Γ(𝑀′

𭑖𝜋𭑗)Γ(𝑀′
𭑖(1 − 𝜋𭑗))1𝐹1(𝑀′

𭑖 ̃𝜋𭑖𭑗; 𝑀′
𭑖; 𝜎𭑖𭑗)𝑝𭑀𭑖𭜋𭑗

𭑖𭑗 (1 − 𝑝𭑖𭑗)𭑀𭑖(1−𭜋𭑗)

(S1.9)

Updating𝜋𭑗: The parameters𝜋𭑗 are updated iteratively, one locus at a time. In the 𝑖th

deme, at locus 𝑗, one allele is chosen at random from a Bernoulli trial with probability

0.5. The proposed allele frequency 𝜋′
𭑗 is chosen as a random variable drawn from a

uniform distribution around the current value 𝜋𭑗:

𝜋′
𭑗 ∼ 𝑈 (𝜋𭑗 − Δ𭜋, 𝜋𭑗 + Δ𭜋) . (S1.10)

The size of the intervalΔ𭜋 is a constant, which is adjusted during 25 short pilot runs of

1,000 iterations, in order to get acceptance rates between 0.25 and 0.40. Since 𝜋𭑗 is

a frequency comprised between 0 and 1, if 𝜋′
𭑗 is outside the interval [0, 1], the excess

is reflected back into the interval; that is, if 𝜋′
𭑗 < 0 then 𝜋′

𭑗 is reset to its absolute

value |𝜋′
𭑗|, and if 𝜋′

𭑗 > 1 then 𝜋′
𭑗 is reset to 2 − 𝜋′

𭑗. This proposal is symmetric, and

the updated allele frequency 𝜋′
𭑗 is therefore accepted according to the appropriate

Metropolis probability, which reads:

1 ∧
[∏𭑛d

𭑖=1 𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋′
𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)] 𝑓(𝜋′

𭑗)

[∏𭑛d
𭑖=1 𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)] 𝑓(𝜋𭑗)

. (S1.11)

Equation (S1.11) can be rewritten as

1∧
∏𭑛d

𭑖=1 Γ(𝑀𭑖𝜋𭑗)Γ(𝑀𭑖(1 − 𝜋𭑗))1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)𝑝𭑀𭑖𭜋′
𭑗

𭑖𭑗 (1 − 𝑝𭑖𭑗)𭑀𭑖(1−𭜋′
𭑗)

∏𭑛d
𭑖=1 Γ(𝑀𭑖𝜋′

𭑗)Γ(𝑀𭑖(1 − 𝜋′
𭑗))1𝐹1(𝑀𭑖 ̃𝜋′

𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)𝑝𭑀𭑖𭜋𭑗
𭑖𭑗 (1 − 𝑝𭑖𭑗)𭑀𭑖(1−𭜋𭑗)

,

(S1.12)

where ̃𝜋′
𭑖𭑗 ≡ 𝜅𭑖𭑗(1 − 𝜋′

𭑗) + (1 − 𝜅𭑖𭑗)𝜋′
𭑗.
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Updating 𝜆: The proposed value of the hyperparameter 𝜆′ is drawn from a lognormal

distribution with median equal to the current value 𝜆, i.e.:

𝑞(𝜆 → 𝜆′) = 1
𝜆′𝜈𭜆

√
2𝜋

exp (− ln(𝜆′/𝜆)2

2𝜈2
𭜆

) , (S1.13)

where 𝜈𭜆 is the standard deviation on the log scale. The standard deviation 𝜈𭜆 is a

constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to

get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is

asymmetric, a Metropolis–Hastings update is required in which the Metropolis ratio

is weighted by the ratio of the forward and reverse proposal densities. This means

that when some moves are more likely to happen (because of the asymmetry of the

proposal distribution), their probability of acceptance is decreased proportionately.

Here, the ratio 𝑞(𝜆′ → 𝜆)/𝑞(𝜆 → 𝜆′) reduces to 𝜆′/𝜆. In order to avoid compu-

tational problems with excessively small or large 𝜆′ values, all moves falling outside

the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the

proposed value𝜆′ is accepted according to the appropriateMetropolis–Hastings prob-

ability, which is:

1 ∧
[∏𭐿

𭑗=1 𝑓(𝛿𭑗|𝜆′)] 𝑓(𝜆′|Λ)𝑞(𝜆′ → 𝜆)

[∏𭐿
𭑗=1 𝑓(𝛿𭑗|𝜆)] 𝑓(𝜆|Λ)𝑞(𝜆 → 𝜆′)

. (S1.14)

Equation (S1.14) can be rewritten as

1 ∧ ( 𝜆
𝜆′ )

𭐿−1

exp ⎡
⎣

(𝜆′ − 𝜆) ⎛

⎝

∑𭐿
𭑗=1 𝛿𭑗

𝜆𝜆′ − 1
Λ

⎞

⎠
⎤
⎦

(S1.15)

Updating 𝛿𭑗: The parameters 𝛿𭑗 are updated iteratively, one locus at a time. The

proposed value of the hyperparameters 𝛿′
𭑗 is drawn from a lognormal distributionwith

median equal to the current value 𝛿𭑗, i.e.:

𝑞(𝛿𭑗 → 𝛿′
𭑗) = 1

𝛿′
𭑗𝜈𭛿

√
2𝜋

exp (
− ln(𝛿′

𭑗/𝛿𭑗)2

2𝜈2
𭛿

) , (S1.16)
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where 𝜈𭛿 is the standard deviation on the log scale. The standard deviation 𝜈𭛿 is a

constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to

get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is

asymmetric, a Metropolis–Hastings update is required in which the Metropolis ratio

is weighted by the ratio of the forward and reverse proposal densities. This means

that when some moves are more likely to happen (because of the asymmetry of the

proposal distribution), their probability of acceptance is decreased proportionately.

Here, the ratio 𝑞(𝛿′
𭑗 → 𝛿𭑗)/𝑞(𝛿𭑗 → 𝛿′

𭑗) reduces to 𝛿′
𭑗/𝛿𭑗. In order to avoid compu-

tational problems with excessively small or large 𝛿𭑗 values, all moves falling outside

the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the

proposed value 𝛿′
𭑗 is accepted according to the appropriateMetropolis–Hastings prob-

ability, which is:

1 ∧
[∏𭑛d

𭑖=1 𝑓(𝜎𭑖𭑗|𝛿′
𭑗)] 𝑓(𝛿′

𭑗|𝜆)𝑞(𝛿′
𭑗 → 𝛿𭑗)

[∏𭑛d
𭑖=1 𝑓(𝜎𭑖𭑗|𝛿𭑗)] 𝑓(𝛿𭑗|𝜆)𝑞(𝛿𭑗 → 𝛿′

𭑗)
. (S1.17)

Equation (S1.17) can be rewritten as

1 ∧ (
𝛿𭑗

𝛿′
𭑗

)
𭑛d−1

exp [(𝛿′
𭑗 − 𝛿𭑗) (

∑𭑛d
𭑖=1 𝜎𭑖𭑗

𝛿𭑗𝛿′
𭑗

− 1
𝜆

)] (S1.18)

Updating 𝜎𭑖𭑗: The parameters 𝜎𭑖𭑗 are updated iteratively in each deme, one locus at

a time. In the 𝑖th deme, at locus 𝑗, the proposed value of the parameters 𝜎′
𭑖𭑗 is drawn

from a lognormal distribution with median equal to the current value 𝜎𭑖𭑗, i.e.:

𝑞(𝜎𭑖𭑗 → 𝜎′
𭑖𭑗) = 1

𝜎′
𭑖𭑗𝜈𭜎

√
2𝜋

exp (
− ln(𝜎′

𭑖𭑗/𝜎𭑖𭑗)2

2𝜈2
𭜎

) , (S1.19)

where 𝜈𭜎 is the standard deviation on the log scale. The standard deviation 𝜈𭜎 is a

constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to

get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is

asymmetric, a Metropolis–Hastings update is required in which the Metropolis ratio is

weighted by the ratio of the forward and reverse proposal densities. This means that
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when some moves are more likely to happen (because of the asymmetry of the pro-

posal distribution), their probability of acceptance is decreased proportionately. Here,

the ratio 𝑞(𝜎′
𭑖𭑗 → 𝜎𭑖𭑗)/𝑞(𝜎𭑖𭑗 → 𝜎′

𭑖𭑗) reduces to 𝜎′
𭑖𭑗/𝜎𭑖𭑗. In order to avoid computa-

tional problems with excessively small or large 𝜎𭑖𭑗 values, all moves falling outside the

interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the pro-

posed value 𝜎′
𭑖𭑗 is accepted according to the appropriate Metropolis–Hastings proba-

bility, which is:

𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎′
𭑖𭑗)𝑓(𝜎′

𭑖𭑗|𝛿𭑗)𝑞(𝜎′
𭑖𭑗 → 𝜎𭑖𭑗)

𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)𝑓(𝜎𭑖𭑗|𝛿𭑗)𝑞(𝜎𭑖𭑗 → 𝜎′
𭑖𭑗)

. (S1.20)

Equation (S1.20) can be rewritten as

𝜎′
𭑖𭑗

𝜎𭑖𭑗
exp [(𝜎′

𭑖𭑗 − 𝜎𭑖𭑗) (𝑝̃𭑖𭑗 − 1
𝛿𭑗

)] 1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)

1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎′
𭑖𭑗)

. (S1.21)

Updating 𝜅𭑖𭑗: The parameters 𝜅𭑖𭑗 are updated iteratively in each deme, one locus

at a time. In the 𝑖th deme, at locus 𝑗, the variable 𝜅𭑖𭑗, which indicates which of the

two alleles is selected for, is updated using Gibbs sampling based on the conditional

posterior distribution:

𝑓(𝜅𭑖𭑗|𝜃[−𭜅𭑖𭑗]) ∝ 𝜓(𝑝𭑖𭑗; 𝑀𭑖, 𝜋𭑗, 𝜅𭑖𭑗, 𝜎𭑖𭑗)𝑓(𝜅𭑖𭑗), (S1.22)

where 𝜃[−𭜅𭑖𭑗] represents all the model parameters but 𝜅𭑖𭑗. Since 𝜅𭑖𭑗 can only take

two integer values (0 and 1), it can be shown that:

Pr(𝜅𭑖𭑗 = 0|𝜃[−𭜅𭑖𭑗]) ∝ 1
2

[
exp [𝜎𭑖𭑗𝑝𭑖𭑗]

1𝐹1(𝑀𭑖𝜋𭑗; 𝑀𭑖; 𝜎𭑖𭑗)
] , (S1.23)

and

Pr(𝜅𭑖𭑗 = 1|𝜃[−𭜅𭑖𭑗]) ∝ 1
2

[
exp [𝜎𭑖𭑗(1 − 𝑝𭑖𭑗)]

1𝐹1(𝑀𭑖(1 − 𝜋𭑗); 𝑀𭑖; 𝜎𭑖𭑗)
] . (S1.24)
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Therefore, the conditional posterior distributionof(𝜅𭑖𭑗|𝜃[−𭜅𭑖𭑗]) fromequation (S1.22)

can be rewritten as

(𝜅𭑖𭑗|𝜃[−𭜅𭑖𭑗]) ∼ Bernoulli (𝜌) , (S1.25)

where

𝜌 ≡
Pr(𝜅𭑖𭑗 = 0|𝜃[−𭜅𭑖𭑗])

Pr(𝜅𭑖𭑗 = 0|𝜃[−𭜅𭑖𭑗]) + Pr(𝜅𭑖𭑗 = 1|𝜃[−𭜅𭑖𭑗])

= [1 + 1𝐹1(𝑀𭑖𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)

1𝐹1(𝑀𭑖(1 − 𝜋𭑖𭑗); 𝑀𭑖; 𝜎𭑖𭑗)
exp [𝜎𭑖𭑗(1 − 2𝑝𭑖𭑗)]]

−1

. (S1.26)
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