File S2
Details on the algorithm to sample from the inference model

In order to provide a decision criterion for discriminating between neutral and selected
markers, we calibrate the Kullback-Leibler divergence (KLD) using simulations from
a predictive distribution based on the observed data set. To that end, we generate
pseudo-observed data as follows.

We set the hyperparameters M, ; and ) to their respective posterior means Mi,
; and )\, as estimated from the MCMC. Then we draw 6j from an exponential distri-
bution ~ exp(A~!) and we draw o, ; from an exponential distribution ~ exp (6;71).
Last, the parameter Ki;is drawn from a Bernoulli distribution (with parameter the
posterior mean £, ;).

We aim at sampling the allele frequency Pij from the distribution with density
f(p;;) defined by equations 2 and 3 in the main text. Because the cumulative dis-
tribution function of the distribution with density f(p;;) is not tractable, we use a

rejection-sampling algorithm. To that end, we define an instrumental distribution

9(p;;) ~ Beta(M;m;, M;(1 — 7)), with density:

_ L'(M;) Mimg—1
9(piz) = L(M;m;)T(M,; (1 — Wj))pij

(1—p;)Mi=m) =1 (s2.1)

We further need to define a constant v, such that f(p, ;) < [ug(p, ;)] over the support

[0, 1]. Noting that:

.. explo. D :
fpig) _ P(7iPi) (52.2)
g(pij) 1F1(Mz‘7rij§Mi§0ij)
then, if we define u = exp(0, ;) /1 Fy (M;7,;;; M;; 0, ;) we get:
f(pij)
LPis)  xp(o,y(ps; — 1)) (52.3)
UQ(Pij) I

Since 0 < p,; < land o;; > 0, by definition, we have exp(c,,;(p;; — 1)) < 1

and therefore f(p;;) < [ug(p;;)]- A straightforward algorithm to sample from the

distribution with density f(p, ;) is then:
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(1) Sample x from a beta distribution Beta(M, 7 ;, M, (1 —m;)) and y from 2/ (0,1)

(the uniform distribution over the unit interval).

(2) Check whether or not y < f(z)/[ug(x)] or equivalently (see equation $2.3) if

log(y) < 0;;(p;; — 1)
e If this holds, accept 2 and set p, ; = z;

e if not, reject the value of x and repeat the sampling step (1).
(3) Compute p,; = P;;(1 — k) + (1 — D)k,

Finally, we draw the allele counts n; ; in the ith deme at the jth locus by arandom draw
from the binomial distribution ~ B(n, ;, p; ;). We repeat this procedure for each locus
jin each demei.
This algorithm is computationally efficient, since it avoids computing ; Iy (M, 7, ;; M;; 0, ;)

(see equations 2 and 3 in the main text). However, the efficiency of the algorithm may
be very low for large values of o, ;. This is so because the expected number of iter-
ations required until an x is successfully generated is exactly the bounding constant
u = exp(0,;)/1F (M;7;;; M;;0,,;). Therefore, to avoid the algorithm getting stuck
in very long loops, we adopt an alternative strategy whenever u > 10%: in such case,
we draw z from a beta distribution Beta(c, ) with the same first two moments as

the target distribution (equations 2 and 3 in the main text). Little algebra shows that:

a=mq(my —my)/(m? —my)and 3= a(l/m; — 1), where

— 1y (M7, + 15 M + 15045) (52.4)
! * 1F1(Mz‘7~rij%Mi;Jij)
and
2 * M; +1 1F1(Miﬁ'ij§Mi§Uz’j)
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