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Details on the algorithm to sample from the inference model

In order to provide a decision criterion for discriminating between neutral and selected

markers, we calibrate the Kullback–Leibler divergence (KLD) using simulations from

a predictive distribution based on the observed data set. To that end, we generate

pseudo-observed data as follows.

We set the hyperparameters𝑀𭑖, 𝜋𭑗 and 𝜆 to their respective posteriormeans 𝑀̄𭑖,

̄𝜋𭑗 and 𝜆̄, as estimated from the MCMC. Then we draw 𝛿𭑗 from an exponential distri-

bution ∼ exp(𝜆̄−1) and we draw 𝜎𭑖𭑗 from an exponential distribution ∼ exp (𝛿−1
𭑗 ).

Last, the parameter 𝜅𭑖𭑗 is drawn from a Bernoulli distribution (with parameter the

posterior mean ̄𝜅𭑖𭑗).

We aim at sampling the allele frequency 𝑝𭑖𭑗 from the distribution with density

𝑓(𝑝𭑖𭑗) defined by equations 2 and 3 in the main text. Because the cumulative dis-

tribution function of the distribution with density 𝑓(𝑝𭑖𭑗) is not tractable, we use a

rejection-sampling algorithm. To that end, we define an instrumental distribution

𝑔(𝑝𭑖𭑗) ∼ Beta(𝑀𭑖𝜋𭑗, 𝑀𭑖(1 − 𝜋𭑗)), with density:

𝑔(𝑝𭑖𭑗) = Γ(𝑀𭑖)
Γ(𝑀𭑖𝜋𭑗)Γ(𝑀𭑖(1 − 𝜋𭑗))

𝑝 𭑀𭑖𭜋𭑗−1
𭑖𭑗 (1 − 𝑝𭑖𭑗)𭑀𭑖(1−𭜋𭑗)−1 (S2.1)

We further need to define a constant 𝑢, such that 𝑓(𝑝𭑖𭑗) ≤ [𝑢𝑔(𝑝𭑖𭑗)] over the support

[0, 1]. Noting that:

𝑓(𝑝𭑖𭑗)
𝑔(𝑝𭑖𭑗)

=
exp(𝜎𭑖𭑗𝑝̃𭑖𭑗)

1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)
(S2.2)

then, if we define 𝑢 ≡ exp(𝜎𭑖𭑗)/1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗) we get:

𝑓(𝑝𭑖𭑗)
𝑢𝑔(𝑝𭑖𭑗)

= exp(𝜎𭑖𭑗(𝑝̃𭑖𭑗 − 1)) (S2.3)

Since 0 ≤ 𝑝̃𭑖𭑗 ≤ 1 and 𝜎𭑖𭑗 ≥ 0, by definition, we have exp(𝜎𭑖𭑗(𝑝̃𭑖𭑗 − 1)) ≤ 1

and therefore 𝑓(𝑝𭑖𭑗) ≤ [𝑢𝑔(𝑝𭑖𭑗)]. A straightforward algorithm to sample from the

distribution with density 𝑓(𝑝𭑖𭑗) is then:
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(1) Sample 𝑥 from a beta distribution Beta(𝑀𭑖𝜋𭑗, 𝑀𭑖(1 − 𝜋𭑗)) and 𝑦 from 𝒰(0, 1)

(the uniform distribution over the unit interval).

(2) Check whether or not 𝑦 < 𝑓(𝑥)/[𝑢𝑔(𝑥)] or equivalently (see equation S2.3) if

log(𝑦) < 𝜎𭑖𭑗(𝑝̃𭑖𭑗 − 1):

• If this holds, accept 𝑥 and set 𝑝̃𭑖𭑗 = 𝑥;

• if not, reject the value of 𝑥 and repeat the sampling step (1).

(3) Compute 𝑝𭑖𭑗 = 𝑝̃𭑖𭑗(1 − 𝜅𭑖𭑗) + (1 − 𝑝̃𭑖𭑗)𝜅𭑖𭑗.

Finally, we draw the allele counts𝐧𭑖𭑗 in the 𝑖th deme at the 𝑗th locus by a randomdraw

from the binomial distribution∼ ℬ(𝑛𭑖𭑗, 𝑝𭑖𭑗). We repeat this procedure for each locus

𝑗 in each deme 𝑖.

This algorithm is computationally efficient, since it avoids computing 1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)

(see equations 2 and 3 in the main text). However, the efficiency of the algorithmmay

be very low for large values of 𝜎𭑖𭑗. This is so because the expected number of iter-

ations required until an 𝑥 is successfully generated is exactly the bounding constant

𝑢 ≡ exp(𝜎𭑖𭑗)/1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗). Therefore, to avoid the algorithm getting stuck

in very long loops, we adopt an alternative strategy whenever 𝑢 > 104: in such case,

we draw 𝑥 from a beta distribution Beta(𝛼, 𝛽) with the same first two moments as

the target distribution (equations 2 and 3 in the main text). Little algebra shows that:

𝛼 = 𝑚1(𝑚2 − 𝑚1)/(𝑚2
1 − 𝑚2) and 𝛽 = 𝛼(1/𝑚1 − 1), where

𝑚1 = ̃𝜋𭑖𭑗 ( 1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗 + 1; 𝑀𭑖 + 1; 𝜎𭑖𭑗)

1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)
) (S2.4)

and

𝑚2 = ̃𝜋𭑖𭑗 (
𝑀𭑖 ̃𝜋𭑖𭑗 + 1

𝑀𭑖 + 1
) ( 1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗 + 2; 𝑀𭑖 + 2; 𝜎𭑖𭑗)

1𝐹1(𝑀𭑖 ̃𝜋𭑖𭑗; 𝑀𭑖; 𝜎𭑖𭑗)
) (S2.5)
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