Supplementary Information

Molecular Evolution of Protein-RNA Mimicry as a Mechanism for Translational Control

Assaf Katz^a, Lindsey Solden^a, S.Betty Zou^b, Will Navarre^b and Michael Ibba^{a,c}

^aDepartment of Microbiology, Ohio State University, Columbus, OH 43210, USA

^bDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8

^cOhio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA

*Corresponding author:	Michael Ibba
	Department of Microbiology
	The Ohio State University
	318 West 12 th Avenue
	Columbus, OH 43210-1292
	USA

Tel: +1 (614) 292-2120 E-mail: ibba.1@osu.edu Table S1. Primers used for *poxA* mutagenesis.

Name	Sequence ^a	Position mutated to alanine
mut_His52Ala_fd	GCGACGGTAACCGATATTgcTTTGGTCCCGTTTGAGACAC	His52
mut_His52Ala_rv	GTGTCTCAAACGGGACCAAAgcAATATCGGTTACCGTCGC	His52
mut_Glu102Ala_fd	CGCAGCTTCCGTAATGcAGAGATGGGGGCGTTATC	Glu102
mut_Glu102Ala_rv	GATAACGCCCCATCTCTgCATTACGGAAGCTGCG	Glu102
mut_Glu103Ala_fd	CAGCTTCCGTAATGAAGcGATGGGGGCGTTATCAC	Glu103
mut_Glu103Ala_rv	GTGATAACGCCCCATCgCTTCATTACGGAAGCTG	Glu103
mut_Arg106Ala_fd	CCGTAATGAAGAGATGGGGGgcTTATCACAACCCTGAGTTCAC	Arg106
mut_Arg106Ala_rv	GTGAACTCAGGGTTGTGATAAgcCCCCATCTCTTCATTACGG	Arg106
mut_His108Ala_fd	GAAGAGATGGGGCGTTATgcCAACCCTGAGTTCACTATGC	Hist108
mut_His108Ala_rv	GCATAGTGAACTCAGGGTTGgcATAACGCCCCATCTCTTC	Hist108
mut_Asp177Ala_fd	GTCGCAGCGAAACTGGcTTTGAGCAATGTTGCTG	Asp177
mut_Asp177Ala_rv	CAGCAACATTGCTCAAAgCCAGTTTCGCTGCGAC	Asp177
mut_Asn180Ala_fd	CAGCGAAACTGGATTTGAGCgcTGTTGCTGATACCGAAGAAG	Asn180
mut_Asn180Ala_rv	CTTCTTCGGTATCAGCAACAgcGCTCAAATCCAGTTTCGCTG	Aspn180
mut_Glu185Ala_fd	CAATGTTGCTGATACCGcAGAAGACCGCGACACG	Glu185
mut_Glu185Ala_rv	CGTGTCGCGGTCTTCTgCGGTATCAGCAACATTG	Glu185
mut_Gln193Ala_fd	GACCGCGACACGCTGCTAgcATTGCTGTTTACCTTTGGC	Gln193
mut_Gln193Ala_rv	GCCAAAGGTAAACAGCAATgcTAGCAGCGTGTCGCGGTC	Gln193
mut_Ser218Ala_fd	GTACCACTTTCCAGCCgcCCAGGCATCACTGGCG	Ser218
mut_Ser218Ala_rv	CGCCAGTGATGCCTGGgcGGCTGGAAAGTGGTAC	Ser218
mut_Arg235Ala_fd	CGAAGATCATCGGGTCGCTGAAgcCTTTGAGGTTTATTATAAAGG	Arg235
mut_Arg235Ala_rv	CCTTTATAATAAACCTCAAAGgcTTCAGCGACCCGATGATCTTCG	Arg235
mut_Glu244Ala_fd	GGTTTATTATAAAGGTATTGcGCTGGCGAATGGTTTCCATG	Glu244
mut_Glu244Ala_rv	CATGGAAACCATTCGCCAGCgCAATACCTTTATAATAAACC	Glu244
mut_Arg303Ala_fd	GTGGCATTAGGTGTTGATgcTCTGGTGATGTTGGCGCTG	Arg303
mut_Arg303Ala_rv	CAGCGCCAACATCACCAGAgcATCAACACCTAATGCCAC	Arg303

^a Mutation site is marked in lower case.

Table S2. Primers used for EF-P mutagenesis.

Name	Sequence ^a	Position mutated to alanine
mut_Phe29Ala_rv	CCTTTACCCGGTTTTACGGCTTCACTCGCTTCAACCGG	Phenylalanine 29
mut_Phe29Ala_fd	CCGGTTGAAGCGAGTGAAGCCGTAAAACCGGGTAAAGG	Phenylalanine 29
mut_Lys31Ala_rv	CCTGGCCTTTACCCGGTGCTACGAATTCACTCGCTTC	Lysine 31
mut_Lys31Ala_fd	GAAGCGAGTGAATTCGTAGCACCGGGTAAAGGCCAGG	Lysine 31
mut_Gly33Ala_rv	GCAATGCCTGGCCTTTAGCCGGTTTTACGAATTCAC	Glycine 33
mut_Gly33Ala_fd	GTGAATTCGTAAAACCGGCTAAAGGCCAGGCATTTGC	Glycine 33

^a Mutation site is marked in lower case.

	TaxID	Species name	Protein GI
γ proteobacteria			
	386585	Escherichia coli	15834382
	62977	Acinetobacter sp.	50085316
	243277	Vibrio cholerae	15642655
	190485	Xanthomonas campestris	21231710
	272843	Pasteurella multocida	15601965
	177416	Francisella tularensis	56707386
	297246	Legionella pneumophila	54296336
δ proteobacteria			
-	246197	Myxococcus xanthus	108762276
	443143	Geobacter sp.	322419666
	448385	Sorangium cellulosum	162457520
α proteobacteria		-	
_	634452	Acetobacter Pasteurianus	258542853
	342108	Magnetospirillum magneticum	83310384
Spirochaetales			
	243276	Treponema pallidum	15639515
	189518	Leptospira interrogans	24217355

Table S3. Species with *poxA* used for alignments.

	TaxID	Species name	Protein GI
γ proteobacteria			
	380394	Acidithiobacillus ferrooxidans	198283109
δ proteobacteria		-	
•	882	Desulfovibrio vulgaris	46580076
	644282	Desulfarculus baarsii DSM 2075	302343635
ε proteobacteria		<i>v</i> <u> </u>	
1	85962	Helicobacter pilorv	15644806
	195099	Campylobacter jejuni	57238249
	387092	Nitratiruptor sp.	152990419
α proteobacteria		1 1	
- F	315456	Rickettsia felis	67459441
	262698	Brucella abortus	62290582
Firmicutes			
	169963	Listeria monocytogenes	16803395
	170187	Streptococcus pneumoniae	15900353
	413999	Clostridium botulinum	148379858
Actinobacteria			1.0077000
	83332	Mycohacterium tuherculosis	15609671
	525909	Acidimicrohium ferrooxidans	256372478
Bacteroidetes	525707	i commerce and gen communis	250572170
Ductor oractes	402612	Flavobacterium psychrophilum	150025056
	295405	Racteroides fragilis	53711777
Cvanobacteria	275705	Ductoronics fragmis	55/11///
Cyanobacter la	103690	Nostoc sn	17232550
	260081	Synachococcus alongatus	56751557
	207004	synechococcus elongulus	30731334

Table S4. Species without *poxA* used for alignments.

Fig S1. Contacts between EF-P and PoxA. A) EF-P contacts both PoxA subunits of the dimer. Figure shows the complex of 2 PoxA (in green and magenta) and 2 EF-P (in blue and red) as observed in pdb 3a5z (chains A, B, C and D). Arrows indicate area where EF-P contacts the other PoxA of the complex. B) and C) Amino acids involved in contacts between EF-P and PoxA. Figure shows amino acids on EF-P (B) and PoxA (C) that make either polar or non-polar contacts. Coloring of figure B and C is as in Figure 1. Additional non-polar contacts are highlighted in blue while non-polar contacts to the other subunit of the complex are marked in cyan.

Fig S2. Superposition of EFP/PoxA complex with tRNA^{Asp}/AspRS complex. Structures of EFP/PoxA (pdb 3a5z chains C and D) and tRNA/AspRS (pdb 1asy chains A and R) were superposed guided by PoxA and AspRS structures. PoxA is shown in magenta and EF-P in green while AspRS is in blue and tRNA^{Asp} in orange.

Fig S3. Analysis of EF-P aminoacylation. After EF-P aminoacylation, the sample was separated by isoelectric focusing (inset). Aminoacylated EF-P (K-EF-P) migrated lower in the gel due to the additional positive charge, which allowed quantification and analysis.

Fig. S4. Alignment of EF-P sequences from organisms with or without a poxA gene. Alignment of 14 sequences of EF-P from organisms that have a poxA gene (top) and 17 organisms that do not have *poxA* (bottom). Lines named PoxA and ribosome indicate the contact positions to PoxA, or ribosome plus tRNA, respectively. Sequences are named by their NCBI taxID. Correspondence between taxID, species name and the GI accession code of the protein sequence used are given in the tables S3 and S4.

Fig S5. EF-P contacts with PoxA and the ribosome. WebLogo representation of the alignment of 112 EF-P sequences. Residues that interact with PoxA in pdb 3a5z are marked with red triangles while those that interact with the ribosome or tRNA^{fMet} in pdb files 3huw or 3hux are marked with light blue triangles. The acceptor loop is marked with a black line, with a black triangle highlighting the aminoacylation position.

