Molecular Cell, Volume 52

Supplemental Information

Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming

Bernhard Payer, Michael Rosenberg, Masashi Yamaji, Yukihiro Yabuta, Michiyo Koyanagi-Aoi, Katsuhiko Hayashi, Shinya Yamanaka, Mitinori Saitou, and Jeannie T. Lee

SUPPLEMENTAL FIGURES

Figure S1, related to Figure 1. Ectopic XCI in *Tsix*-mutant E5.5 diapause embryos

(A) Male *Tsix*^{-/Y} embryo displaying H3K27me3(green)-positive spots (arrows) suggesting ectopic XCI in some NANOG(red)-negative cells. The boxed ICM region is shown in a close-up in the middle and right panel. Projection of z-series (full embryo). Scale bars = $20 \ \mu m$

(B) Female $Tsix^{-/-}$ embryo with two H3K27me3-spots in several extraembryonic cells (stars, PE and/or TE cells). Projection of 20 μ m thick z-stack (partial embryo).

Figure S2, related to Figure 7. Pluripotency factor binding across the *Rnf12* locus and the *Jpx/Xist/Tsix* region

(A) ChIP-seq data (also shown in Figure 7B) for binding of NANOG, OCT4, SOX2 (Marson et al., 2008) and PRDM14 (Ma et al., 2010) along the *Xic*, retrieved via the NCBI epigenomics database. Arrows indicate binding sites assayed in (B).

(B) ChIP-qPCR for pluripotency factor binding 5' of *Rnf12* (a, b, c) and at *Xist* intron 1 (d) in undifferentiated *Prdm14*^{+/+} (black) and *Prdm14*^{-/-} (red) ESCs. Error bars = SD. Goat IgG = negative control for α OCT4 and α SOX2. Rat IgG = negative control for α NANOG.

				Xic loci		
		Rnf12	Xist promoter	Xist intron 1	DXPas34/ Tsix	Xite
ctors	OCT4		-			
	SOX2	\bigcirc	-		-	\bigcirc
y fa	KLF4	\triangle	_	_	\triangle	\triangle
anc	NANOG	0	-	0	-	-
pote	C-MYC	-	-	-		-
uri	REX1	-	igodol	-	igodol	-
Б	PRDM14	\bigcirc	-	\bigcirc	-	-

Α

RNF12 ---> REX1:ub

Jpx RNA

Јрх

Rnf12

⊢ Tsix F

Xite

intron 1

Figure S3, related to Figure 7. Extended model for molecular mechanisms of XCR

(A, B) XCR and XCI are controlled by multiple mechanisms. The master regulator *Xist* is the target of opposing factors. Several pluripotency factors bind to regulatory regions of *Rnf12*, *Xist* and *Tsix*, where they act either as activators or repressors. One of those factors is PRDM14, which acts repressively by binding to *Xist* intron1 and by recruiting PRC2 to *Rnf12*, which PRC2 silences through establishing H3K27 tri-methylation. *Tsix*, which is activated by pluripotency factors, in turn represses *Xist*, at least in part by recruiting PRDM14 to *Xist* intron 1. In addition to these repressive forces, the lack of the expression of *Xist*-activators RNF12 and Jpx contribute to the *Xist* "off" state during XCR. The question mark indicates that nothing is known about the regulation of *Jpx*.

(C) In the absence of *Tsix*, PRDM14 dissociates from *Xist* intron 1. During XCR in blastocysts, *Xist*-repression is thereby delayed. However, in *Tsix^{-/-}* mutant pluripotent stem cells, *Xist* is not upregulated due to the lack of RNF12 and Jpx and by repression through other pluripotency factors.

(D) In *Prdm14*-mutant cells/embryos, *Rnf12* gets de-repressed and its protein ubiquitinates REX1, another *Xist* and *Tsix* regulator, resulting in REX1 degradation. Due to other repressive pluripotency factors this is not sufficient to lead to upregulation of *Xist* in *Prdm14^{-/-}* ESCs. However, in *Prdm14^{-/-}* blastocysts and during iPSC reprogramming this leads to a reduced XCR-efficiency.

(E) In cells before or after XCR, the lack of pluripotency factor-driven repressive mechanisms and the expression of the *Xist* activators RNF12 and Jpx lead to full upregulation of *Xist*.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Expression analysis by qPCR

ESC and iPSC RNA was isolated and DNase I-treated using RNeasy Mini kit (Qiagen). RNA was then reverse transcribed with Oligo(dT)₁₅ primers (Promega) and Superscript III reverse transcriptase (Invitrogen). QPCR on cDNA of at least three biological replicates each for *Prdm14*^{+/+} and *Prdm14*^{-/-} ESCs was performed on an Bio-Rad iCycler using iQ SYBR Green Supermix (Bio-Rad). Ct values were normalized to Gapdh in order to calculate expression changes (Pfaffl, 2001).

Stable transfection of ESCs

2x10⁷ EL 16.7 and *Tsix*-^{*StopTST*} (Ogawa et al., 2008) mouse ESCs were electroporated with 30 mg of linearized pCAGGS plasmid vector containing recombinant PRDM14 fused to C-terminal Flag and Hemagglutinin tags (PRDM14-FH) (Yamaji et al., 2013), in PBS using GenePulser II (Bio-Rad) as described (Anguera et al., 2011). Cells were selected using media supplemented with 1µg/ml Puromycin (Gibco). PRDM14-FH expression was confirmed by Western Blot using anti-HA tag antibody (Sigma, H-6908).

Chromatin immunoprecipitation

EL 16.7, *Tsix*-Stop, *Prdm14*^{+/+} or *Prdm14*^{-/-} mouse ESCs were trypsinized and crosslinked with 1.1% formaldehyde. $5x10^6$ cells were subjected to chromatin immunoprecipitation as described previously (Jeon and Lee, 2011) using specific antibodies (see below). Enrichment was quantified using a Bio-Rad iCycler.

List of antibodies used for immunostainings

Antibody	Dilution
Alexa Fluor 488/555/647 secondary antibodies (Invitrogen)	1:500
goat anti-GATA4 (Santa Cruz, sc-1237))	1:50
mouse anti-H3K27me3 (Abcam, ab6002)	1:100
rabbit anti-NANOG (Novus Biologicals, NB100-588)	1:750
rat anti-NANOG (eBioscience, 14-5761)	1:200
mouse anti-SSEA1 (Developmental Studies Hybridoma	1:200
Bank, University of Iowa, MC-480)	

Primer list for quantitative RT-PCR

Target	Primers	Primer Sequence
Dnmt3b ¹	Dnmt3bBP1F	CTC GCA AGG TGT GGG CTT TTG TAA C
	Dnmt3bBP1R	CTG GGC ATC TGT CAT CTT TGC ACC
Dnmt3l ¹	Dnmt3IBP1F	CCA GGG CAG ATT TCT TCC TAA GGT C
	Dnmt3IBP1R	TGA GCT GCA CAG AGG CAT CC
Gapdh ¹	GapdhBP1F	ATG AAT ACG GCT ACA GCA ACA GG
	GapdhBP1R	CTC TTG CTC AGT GTC CTT GCT G
Gata6 ¹	Gata6BP1F	CAC AGT CCC CGT TCT TTT ACT G
	Gata6BP1R	GTG GTA CAG GCG TCA AGA GTG
Jpx ²	Jpx76+	TTA GCC AGG CAG CTA GAG GA
	Jpx255-	AGC CGT ATT CCT CCA TGG TT
Nanog ¹	NanogBP1F	CTT TCA CCT ATT AAG GTG CTT GC
	NanogBP1R	TGG CAT CGG TTC ATC ATG GTA C
Oct4 ¹	Oct4BP1F	GAT GCT GTG AGC CAA GGC AAG
	Oct4BP1R	GGC TCC TGA TCA ACA GCA TCA C
Rnf12 ³	Rnf12 ex4-5 for	GGT CCA CCA CAG AGC
	Rnf12 ex4-5 rev	TGA CCA CTT CTT GTT GTA TTT CC
Sox2 ¹	Sox2BP1F	CAT GAG AGC AAG TAC TGG CAA G
	Sox2BP1R	CCA ACG ATA TCA ACC TGC ATG G
Tsix ⁴	TsixBP6F	TGG GTC ATT GGC ATC TTA GTC
	TsixBP6R	CCC AGG GTG TCT GAT CTC TT
Xist ⁵	XistBP2F	CCC GCT GCT GAG TGT TTG ATA TG
	XistBP2R	CAG AGT AGC GAG GAC TTG AAG AG

The primer sequences have been previously described in 1 (Kurimoto et al., 2006), 2 (Sun et al., 2013), 3 (Barakat et al., 2011), 4 (Sugimoto et al., 2007) and 5 (Shibata and Lee, 2003).

List of antibodies used for ChIP experiments

Antibody	Isotype Control	Amount per
		Reaction (mg)
Anti-Histone H3K27me3 rabbit	Rabbit IgG (Abcam, ab46540)	5
polyclonal (Active Motif, cat# 19155)		
Anti-Sox2 (Y-17) goat polyclonal	Normal goat IgG (Santa Cruz, sc-	5
antibody (Santa Cruz, sc-17320)	2028)	
Anti-Oct3/4 (N-19) goat polyclonal	Normal goat IgG (Santa Cruz, sc-	5
antibody (Santa Cruz, sc-8628)	2028)	
Anti-Mouse Nanog clone eBioMLC-	Rat IgG2A (Abcam, ab18450)	2.5
51 rat monoclonal antibody		
(eBioscience, cat# 14-5761)		

Primer list for genomic loci tested on ChIP experiments

Amplicon	Primers	Primer Sequence	
β -actin promoter ¹	b_actin_prom_F	CCG TTC CGA AAG TTG CCT T	
	b_actin_prom_R	CGC CGC CGG GTT TTA TA	
5' Rnf12	RNF12_P14_3F	AGC GCC AGC TCG GAG ACG TA	
	RNF12_P14_3R	GGC CTG TGA AGC TGG GAG CG	
4kb upstream to Rnf12 ¹	RNF12_4kb_F	CAG CCT CTG GCT CTA CCA GT	
	RNF12_4kb_R	GTG ACC TGC TGG GGA GAA TA	
5kb upstream to Rnf12 ¹	RNF12_5kb_F	GCC TGT CAA ACG TCC TGT TTA	
	RNF12_5kb_R	GGA GGT TGT GGG AGA AAC AA	
H3K27me3 upstream to			
Rnf12	RNF12_K27_F	CTC CCA AAT GAC CCT TCC CC	
	RNF12_K27_R	TGA GAG GAC TGC AAG AAG GC	
Xist Intron 1 ²	XIn1_F	AAC CCT TTT AAG TCC ACT GTA AAT TCC	
	Xln1_R	TAG AGA GCC AGA CAA TGC TAA GCC	
Xist Intron 1 (Mus-specific)	Xin1_ASP_F	CTA GAG AGC CAG ACA ATG CT	
	Xin1_ASP_R2 (Mus)	TTT TGC ATT TGC CTT TTG AA	
Xist Intron 1 (Cas-specific)	Xin1_ASP_F3	AAA TGT TTC CTT TTG AAG CA	
	Xin1_ASP_R1 (Cas)	TTT TGC ATT TGC CTT TTG AT	

¹ Primer sequences for regions 4 kb and 5 kb upstream to *Rnf12* transcription start site as well as control non-binding β -actin promoter region were adopted from (Navarro et al., 2011).

² Xist intron 1 primer pair was described in (Navarro et al., 2008).

SUPPLEMENTAL REFERENCES

Anguera, M.C., Ma, W., Clift, D., Namekawa, S., Kelleher, R.J., 3rd, and Lee, J.T. (2011). Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7, e1002248.

Jeon, Y., and Lee, J.T. (2011). YY1 tethers Xist RNA to the inactive X nucleation center. Cell *146*, 119-133.

Kurimoto, K., Yabuta, Y., Ohinata, Y., Ono, Y., Uno, K.D., Yamada, R.G., Ueda, H.R., and Saitou, M. (2006). An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res *34*, e42.

Navarro, P., Moffat, M., Mullin, N.P., and Chambers, I. (2011). The X-inactivation transactivator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells. Hum Genet *130*, 255-264.

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res *29*, e45.

Shibata, S., and Lee, J.T. (2003). Characterization and quantitation of differential Tsix transcripts: implications for Tsix function. Hum Mol Genet *12*, 125-136.