

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

For Adv. Mater., DOI: 10.1002/adma.201303520

**Title:** Tunable Delivery of siRNA from a Biodegradable Scaffold to Promote Angiogenesis *In Vivo* 

*Christopher E. Nelson<sup>1</sup>, Arnold J. Kim<sup>1</sup>, Elizabeth J. Adolph<sup>2</sup>, Mukesh K. Gupta<sup>1</sup>, Fang Yu<sup>3</sup>, Kyle M. Hocking<sup>1</sup>, Jeffrey M. Davidson<sup>3</sup>, Scott A. Guelcher<sup>2</sup>, Craig L. Duvall<sup>1\*</sup>.* 



# Supplemental Information siRNA and primer sequences

Nucleic Acids were purchased from Integrated DNA Technologies (IDT, Coralville, IA, USA) based on the design principle that dsRNAs that contain a 27-mer antisense strand and a 25-mer sense strand have up to a 10-fold increased potency compared to 21-mer siRNA counterparts.<sup>[1]</sup> In addition, 2'-O-methyl (2-OMe) nucleotides were incorporated to improve duplex stability and nuclease resistance without affecting silencing activity or producing toxicity.<sup>[2]</sup> Minimal 2-OMe modifications on the backbone of the dsRNA were made to eliminate toll-like receptor activation and an immune response, with negligible effects on the potency of gene silencing.<sup>[3, 4]</sup> All listed siRNAs were screened *in vitro* before use *in vivo* (**Supplemental Table 1**). Fluorescent labels were used in portions of the manuscript including 6-FAM and cy5. These labels were obtained from IDT which are purified by HPLC.

| Name               | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mRNA     | Silencing | Citation |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Target   | (in vitro |          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location | 50nM)     |          |
| dsDNA              | S: 5'- <u>FAM</u> -GTCAGAAATAGAAACTGGTCATC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A      | N/A       | [5]      |
|                    | AS: 5'-GATGACCAGTTTCTATTTCTGAC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |           |          |
| PPIB#1             | S: 5'-GCCUUAGCUACAGGAGAGAAAGG[dA][dT]-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 329      | 10%       | N/A      |
| NM_011149          | AS: 5'-AUCCUUUCUCUCUGUAGCUAAGGCUA-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |          |
| PPIB#2             | S: 5'-GCAUGGAUGUGGUACGGAAGGUG[dG][dA]-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 621      | 95%       | N/A      |
| NM_011149          | AS: 5'-UCCACCUUCCGUACCACAUCCAUGCCC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -         |          |
| PPIB#3             | S: 5'-CGAUAAGAAGAAGGGACCUAAAG[dT][dC]-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199      | 30%       | N/A      |
| NM_011149          | AS: 5'-GACUUUAGGUCCCUUCUUCUUAUCGUU-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -         | 16 71    |
| Anti-              | S: 5'-CGUACGCGGAAUACUUCGAAAUG[dT][dC]-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230      | 55%       | [0, 7]   |
| Luciferase         | AS: 5'-GACAUUUCGAAGUAUUCCGCGUACGUG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |           |          |
| pGL2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           |          |
| Scrambled          | DS Scrambled Neg - from IDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A      | N/A       |          |
| PHD2 #1            | S: 5'-ACAUAGUUACAAGAGGAAACAAGCC - 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2094     | 78%       |          |
|                    | AS: 5'-GGCUUGUUUCCUCUUGUAACUAUGUUG - 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2052     | (70)      |          |
| PHD2 #2            | S: 5'-ACCUAACAGUAGAUGGUUGCCACTG - 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2053     | 67%       |          |
| DUD2 #2            | AS: 5'-CAGUGGCAACCAUCUACUGUUAGGUCG - 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1279     | 9.20/     |          |
| PHD2 #3            | S: 5' - GGUACGCAAUAACUGUUUGGUAUTT -3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1278     | 8.2%      |          |
|                    | AS: 5'-AAAUACCAAACAGUUAUUGCGUACCUU - 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |
| DDID               | EWD: $51 - \pi\pi^2 C^3 \pi^2 C^2 \pi^2 C^3 \pi^2 C^3 \pi^2 C^3 T^2 C^3 T^3 C^3 T^3 C^3 T^3 C^3 T^3 C^3 T^3 T^3 T^3 T^3 T^3 T^3 T^3 T^3 T^3 T$ |          |           |          |
| Primara<br>Drimara | PEX. 5' = CAACAACTCTCACCATCAG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |
| CAPDU              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           |          |
| GAPDH              | FWD: 5'-CTCACTCAAGATTGTCAGCAATG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |           |          |
| Primers            | REV: 5'-GAGGGAGATGCTCAGTGTTGG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |
| STAT-1             | FWD: 5'-GCAACTGGCATATAACTT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |
| Primers            | REV: 5'-GTGACATCCTTGAGATTC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |
| ΤΝFα               | FWD: 5'-CAAAGGGATGAGAAGTTC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |
| Primers            | REV: 5'-TGAGAAGATGATCTGAGT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |
| PHD2               | FWD: 5'-ATCTAACAGGTGAGAAAGGT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           |          |
| Primers            | REV: 5'-ACAGAAGGCAACTGAGAG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |
| VEGE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           |          |
| Primers            | $REV \cdot 5' - CTCACCGCCTTGCCTTGTCACA-3'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |          |
| 1 1111015          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           |          |
| FGF-2              | FWD: 5'-CTCCAGTTGGTATGTGGCACT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |
| Primers            | REV: 5'-CAGTATGGCCTTCTGTCCAGG-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |

## Supplementary Table S1 – Nucleic acid sequences



 $Poly [DMAEMA_{71}\mbox{-}b\mbox{-}(BMA_{103}\mbox{-}co\mbox{-}PAA_{68}\mbox{-}co\mbox{-}DMAEMA_{57})] and nanoparticle (NP) characterization$ 



Supplementary Figure S1: Characterization of Poly[DMAEMA<sub>71</sub>-b-(BMA<sub>103</sub>-co-PAA<sub>68</sub>-co-DMAEMA<sub>57</sub>)] and self-assembled nanoparticles. These data are representative of the polymer and the NPs used in this study. The formulations are similar to those characterized in previous publications.<sup>[8-10]</sup> A) H<sup>1</sup> NMR of the polymer was used to determine percent composition of each monomer. B) GPC for the DMAEMA macroCTA and the diblock copolymer were utilized to determine molecular weight and polydispersity. C) TEM of the NPs after micellar assembly of poly[DMAEMA<sub>71</sub>-b-(BMA<sub>103</sub>-co-PAA<sub>68</sub>-co-DMAEMA<sub>57</sub>)] shows a uniform structure of the particles(Scale = 100 nm). D) Flow cytometry of NIH3T3 mouse fibroblast uptake of fluorescently labeled dsDNA loaded into si-NPs and Lipofectamine 2000 relative to control cells with no treatment demonstrate a higher level of uptake for NPs. E) The hemolysis assay was used to demonstrate that the pH-dependent membrane disruptive activity of the NPs is appropriately tuned for endosomlytic behavior. F) All NP formulations used in this study were cytocompatible in NIH3T3 fibroblasts (3T3s) and RAW 264.7 macrophages (RAW) compared to a no treatment (NT) control, siRNA only (SI), and HiPerFect (HP) as shown by this LDH assay (note that 4:1 charge ratio (NH<sub>3</sub>+/PO<sub>4</sub>-) was utilized for all si-NPs formulations in these studies).



## The Weibull model for release kinetics

Equation S1: 
$$\frac{M_t}{M_{\infty}} = 1 - exp(-a \cdot t^b)$$

The Weibull model describes the % of mass of si-NPs released  $(M_t/M_{\infty})$  at time t, where *a* is a constant based on the system, and *b* is a constant based on the release kinetics. Previous reports suggest that values of b < 0.75 indicate that Fickian diffusion is the dominant release mechanism.<sup>[11, 12]</sup>

| Formulation     | a      | b      | $R^2$  |
|-----------------|--------|--------|--------|
| LTI-0T          | 0.0273 | 0.5511 | 0.992  |
| LTI – 1.25T     | 0.1582 | 0.3488 | 0.9183 |
| LTI – 2.5T      | 0.4797 | 0.3648 | 0.869  |
| LTI – 5T        | 1.729  | 0.4448 | 0.8736 |
| HDIT – 0T       | 0.026  | 0.336  | 0.9792 |
| HDIT –<br>1.25T | 0.0399 | 0.3828 | 0.9764 |
| HDIT – 2.5T     | 0.0691 | 0.4818 | 0.9689 |
| HDIT – 5T       | 0.1451 | 0.4402 | 0.99   |

#### **Supplementary Table S2.** Weibull Model Analysis – In Vitro Release Data

Supplementary Table S3. Weibull Model Analysis – In Vivo Release Data

| Formulation     | а      | b      | $R^2$  |
|-----------------|--------|--------|--------|
| LTI-0T          | 0.433  | 0.3052 | 0.8912 |
| LTI – 1.25T     | 0.9976 | 0.1599 | 0.8236 |
| LTI – 5T        | 1.336  | 0.2436 | 0.7426 |
| HDIT – 0T       | 0.2912 | 0.3707 | 0.8921 |
| HDIT –<br>1.25T | 0.4716 | 0.3591 | 0.9295 |
| HDIT – 5T       | 0.867  | 0.317  | 0.8564 |



**Supplementary Figure S2. Visual Representation of Release Kinetics.** The release kinetics data (Figure 2K, 2L) was calculated by loading the si-NPs with Cy5-labeled siRNA and measuring the change in fluorescence within the PEUR scaffolds with intravital imaging. In each case, a region of interest (shown in red) was defined that contained just the scaffold, and the average fluorescence was calculated and compared to the initial image of PUR before implantation (after compensating for loss of fluorescence from imaging through the tissue). The representative images above visually demonstrate the rate of loss of Cy5 fluorescence within the scaffold.

## The 4 parameter logistic model used for $IC_{50}$ and dose response analysis

Equation 2: %Expression =  $\frac{-1}{\left(1 + \left(\frac{x}{IC_{50}}\right)^{b}\right)} + 1$ 



Temporal control of the gene silencing profile for scaffolds composed of HDIT PEUR



**Supplementary Figure S3:** PCR for PPIB expression in the HDIt scaffolds using the same method described for the LTI data shown in Figure 3C. The temporal gene silencing profile was similar to that seen with the LTI based scaffolds.



## Infiltration of PUR scaffolds. Effect of formulation



**Supplementary Figure S4** - Microscopic view of Hematoxylin and eosin (H&E) stained sections shows the morphology and the degree of infiltration at day 21 and day 35 in LTI and HDIt based scaffolds demonstrating similar levels of cellular infiltration. Scale bar = 200 um. (n=1)



PCR for TNFα and STAT-1 markers of inflammation and TLR activation



**Supplementary Figure S5:** PCR for STAT-1 and TNF $\alpha$  normalized to GAPDH expression indicates that the delivery platform does not activate nonspecific inflammation or TLRs. A statistically insignificant increase in the scaffolds loaded with si-NPs containing scrambled siRNA may indicate a small non-specific inflammatory response to either the scrambled siRNA or the polymer, but is not indicative of the orders of magnitude increase in STAT-1 produced by TLR activation.<sup>[13]</sup> In the scaffolds containing si-NPs loaded with PPIB siRNA (PPIB-NP), there was a significant decrease in both STAT-1 and TNF $\alpha$ , suggesting anti-inflammatory activity was produced by silencing the model gene PPIB. This aligns with the known functions of PPIB as a pro-inflammatory secretory product of macrophages<sup>[14]</sup> that is increased in response to inflammatory stimuli<sup>[15]</sup> and that plays a role in adhesion of T-lymphocytes.<sup>[16]</sup> It has also been previously identified that inhibition of CD147 and PPIB interactions is a viable therapeutic strategy for reduction in inflammation.<sup>[17]</sup> Although it is outside the scope of the current report, this result indicates that potent PPIB silencing has the potential to be used as an anti-inflammatory therapy.



## Supplemental methods

## 1. NP characterization

The diblock copolymer used in this study is from the same synthesis previously reported.<sup>[10]</sup> The polymers were characterized by gel permeation chromatography (GPC, Shimadzu Corp., Kyoto, Japan) in DMF with 0.1 M LiBr using an inline Wyatt miniDAWN TREOS light scattering detector (Wyatt Technology Corp., Santa Barabara, CA) and H<sup>1</sup> NMR (Bruker 400 MHz Spectrometer equipped with a 9.4 T Oxford magnet) for molecular weight and composition. Transmission Electron Microscopy (TEM, Philips CM20 Transmission Electron Microscope, EO, Netherlands) was used to evaluate micelle diameter and morphology. A gel retardation assay was used to select the charge ratio  $(NH_3+/PO_4-)$ , and 4:1 was used for all experiments. Flow cytometry was performed on NIH3T3 fibroblasts treated with a concentration of 50nM FAM labeled dsDNA (Supplemental Table S1) and measured with a BD FACSCalibur flow cytometer (San Jose, CA). The data was analyzed using FlowJo software (version 7.6.4 Ashland, OR). A pH-dependent hemolysis assay was performed using a standardized protocol<sup>[18]</sup> to characterize pH-dependent membrane disruption of the polymer at concentrations of 40 µg/mL, 5µg/mL, and lug/mL in buffers of pHs 7.4, 6.8, 6.2, and 5.8. The percent hemolysis was calculated using data collected using a plate reader (Infinite F500, Tecan Group Ltd., Mannedorf, Switzerland) to measure absorbance at 541 nm. Cellular toxicity was analyzed at a concentration of 50nM siRNA with varying charge ratios up to N:P of 8:1 using an LDH cytotoxicity kit (Roche, Basal, Switzerland).

## 2. Western blot

Frozen samples were extracted with UDC buffer (8 M urea, 10 mM dithiothreitol (DTT), 4% CHAPS containing Phosphatase I and II protease inhibitor cocktail (Sigma, St. Louis, MO)) by vortexing at room temperature overnight and centrifugation at 14,000 rpm for 15 min at 4°C. Soluble protein concentrations were determined using the Bradford assay (Pierce Chemical, Rockfort, IL). Equal amounts (30 μg) of proteins were added to Laemmli sample buffer (Bio-Rad laboratories, Inc. Hercules, CA), heated for 5 min at 100°C, and separated on 12% SDS polyacrylamide gels. Proteins from the gels were transferred onto nitrocellulose membranes (Li-COR Biosciences, Lincoln, NE) and blocked with blocking buffer for 1 hour at room temperature(Li-COR Biosciences, Lincoln, NE) prior to incubation overnight at 4°C with antisera against PPIB (1:2000,Sigma) and β-actin (1:250,Santa Cruz Biotechnology). Membranes were washed three times with TBS containing Tween 20 (0.1%) (TBST) and incubated with 680 nm and 800 nm infrared-labeled secondary antibodies (Li-Cor, Lincoln, NE) for 1h at room temperature. The membranes were subsequently washed with TBST, and protein-antibody complexes were visualized and quantified using the Odyssey direct infrared fluorescence imaging system (Li-Cor Biosciences NE).

## 3. Cardiac Perfusion and microCT

Mice were sacrificed by CO<sub>2</sub> inhalation and perfused with normal PBS containing 4 mg/mL papaverine hydrochloride (Sigma) and 100 U/mL Heparin followed by 10% neutral buffered formalin, followed by PBS with papaverine hydrodhloride and Heparin. Next, 30 mL of the lead chromate based contrast agent Microfil® (Flowtec) was injected into the left ventricle and allowed to cure overnight at 4°C. Implants were retrieved and scanned using a microCT (uCT 50, Scanco Medical AG, Brüttisellen Switzerland) for vessel morphology, vascular volume and vascular thickness. Regions of Interest were selected by each slice selecting area inside the scaffold.



[1] D. H. Kim, M. A. Behlke, S. D. Rose, M. S. Chang, S. Choi, J. J. Rossi, Nat. Biotechnol. 2005, 23, 222-226.

Submitted to Submi

- [2] M. A. Behlke, *Oligonucleotides* **2008**, *18*, 305-319.
- [3] A. Judge, I. MacLachlan, *Hum. Gene Ther.* **2008**, *19*, 111-124.
- [4] A. D. Judge, G. Bola, A. C. Lee, I. MacLachlan, *Mol. Ther.* **2006**, *13*, 494-505.

[5] N. P. Truong, Z. Jia, M. Burgess, L. Payne, N. A. McMillan, M. J. Monteiro, *Biomacromolecules* **2011**, *12*, 3540-3548.

- [6] J. R. de Wet, K. V. Wood, M. DeLuca, D. R. Helinski, S. Subramani, *Mol. Cell. Biol.* 1987, 7, 725-737.
- [7] S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, *Nature* 2001, 411, 494-498.
- [8] A. Convertine, D. Benoit, C. Duvall, A. Hoffman, P. Stayton, J. Control. Release 2009, 133, 221-229.
- [9] A. J. Convertine, C. Diab, M. Prieve, A. Paschal, A. S. Hoffman, P. H. Johnson, P. S. Stayton,
- *Biomacromolecules* **2010**, *11*, 2904-2911.

[10] C. E. Nelson, M. K. Gupta, E. J. Adolph, J. M. Shannon, S. A. Guelcher, C. L. Duvall, *Biomaterials* **2012**, *33*, 1154-1161.

- [11] B. Li, K. V. Brown, J. C. Wenke, S. A. Guelcher, J. Control. Release 2010, 145, 221-230.
- [12] V. Papadopoulou, K. Kosmidis, M. Vlachou, P. Macheras, Int. J. Pharm. 2006, 309, 44-50.
- [13] C. A. Sledz, M. Holko, M. J. de Veer, R. H. Silverman, B. R. G. Williams, Nat. Cell. Biol. 2003, 5, 834-839.
- [14] B. Sherry, N. Yarlett, A. Strupp, A. Cerami, P. Natl. Acad. Sci. USA 1992, 89, 3511-3515.
- [15] A. Melchior, A. Denys, A. Deligny, J. Mazurier, F. Allain, *Exp. Cell. Res.* 2008, 314, 616-628.
- [16] F. Allain, C. Vanpouille, M. Carpentier, M.-C. Slomianny, S. Durieux, G. Spik, *P. Natl. Acad. Sci. USA* **2002**, *99*, 2714-2719.
- [17] V. Yurchenko, S. Constant, E. Eisenmesser, M. Bukrinsky, *Clin. Exp. Immunol.* 2010, 160, 305-317.
- [18] B. C. Evans, C. E. Nelson, S. S. Yu, K. R. Beavers, K. A. J., H. Li, H. M. Nelson, T. D. Giorgio, C. L. Duvall, *J. Vis. Exp.* **2012**, e50166.