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Author Material: Text  
 

Materials and Methods 

Group matching algorithm 

The TD cohort was selected by a customized matching algorithm from a larger 

sample of TD children who were part of an ongoing study at Stanford University. One of 

the co-authors (K.S.) developed an optimization method that uses the general properties 

of the experimental group in order to select a well-matched sample of TD individuals 

through the principles of genetic algorithms. For this study, the TD cohort was selected to 

be matched to the ASD group on age, full scale IQ and gender ratio as follows. Given the 

relevant criteria of the experimental group (in our case, gender ratio, age, and full-scale 

IQ mean and standard deviation of the ASD group), the algorithm randomly creates 

10,000 combinations of 20 individuals each (i.e. the size of the experimental group) and 

computes a fitness score (as intended by genetic algorithms and thereby in biological 

terms) for each of the created combinations. The fitness score is then entered into a ruler 

probability distribution to find, using crossing-over on the pairs that best matched a 

subset of participants (i.e. how well the fitness score of each of the created combinations 

matches the original criteria), the optimal TD group. This algorithm is designed to be less 

biased than most common matching criteria (i.e. one to one matching) which make the 

assumption that each individual in the experimental population is identical to their control 

subject with the only exception that the latter does not present a clinical characteristic 

(e.g. ASD). 

fMRI data preprocessing 
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A linear shim correction was applied separately for each slice during 

reconstruction using a magnetic field map acquired automatically by the pulse sequence 

at the beginning of the scan 1. Functional MRI data were then analyzed using SPM8 

analysis software (http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to correct for 

motion, corrected for errors in slice-timing, spatially transformed to standard stereotaxic 

space (based on the Montreal Neurologic Institute (MNI) coordinate system), resampled 

every 2 mm using sinc interpolation and smoothed with a 6mm full-width half-maximum 

Gaussian kernel to decrease spatial noise prior to statistical analysis. Translational 

movement in millimeters (x, y, z) and rotational motion in degrees (pitch, roll, yaw) was 

calculated based on the SPM8 parameters for motion correction of the functional images 

in each subject. In both groups, average movement was less than 0.5 mm root mean 

square (RMS), and RMS values did not differ between children with ASD and TD 

children (ASD: 0.3 ± 0.2; TD: 0.4 ± 0.3, p > 0.5). No subject displayed greater than 5mm 

translational motion or greater than 5 degrees rotational motion (ASD: range x = 0.58 ± 

0.64, range y = 0.80 ± 0.55, range z = 1.75 ± 1.21, range pitch =1.74 ± 0.94, range roll = 

0.84 ± 0.57, range yaw = 0.63 ± 0.52; TD range x = 0.53 ± 0.33, range y = 0.89 ± 0.93, 

range z = 1.58 ± 1.35, range pitch = 1.72 ± 1.26, range roll = 0.86 ± 0.81, range yaw = 

0.75 ± 0.68, all p > 0.5).  

Dual regression ICA 

Independent component analysis (ICA) is a model-free, data-driven approach 

whereby four-dimensional fMRI data is decomposed into a set of independent one-

dimensional timeseries and associated three-dimensional spatial maps, which describe the 
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temporal and spatial characteristics of the underlying signals or components 2. In the dual 

regression approach (http://www.fmrib.ox.ac.uk/analysis/dualreg/), preprocessed data 

from all participants are first entered into a group ICA to identify large-scale patterns of 

functional connectivity in the population. In the current study, we decomposed the data 

into 25 independent components and selected ten components corresponding to 

previously described functional networks, as described. 

Next, the dual-regression algorithm was applied to identify subject-specific 

timecourses and spatial maps. This procedure employs a set of ICA spatial maps derived 

from the initial group ICA in a linear model fit against each individual fMRI dataset, 

resulting in matrices describing the temporal dynamics of the corresponding networks for 

each subject. The timecourse matrices are normalized by their variance and used in a 

linear model fit against each individual fMRI dataset. This temporal regression results in 

subject-specific spatial maps that reflect degree of synchronization (both amplitude and 

coherence across space 3, 4). The different synchronization maps were then collected 

across subjects into 4D files (one per original ICA map), and submitted to voxel-based 

statistical testing using nonparametric permutation testing 5. Group difference maps from 

this statistical testing were thresholded at the p < 0.05 level, as described in the text. 

Background: Sparse linear classification and regression 

In this study we used sparse logistic regression for classification and sparse linear 

regression for exploring relationships between brain networks and ASD symptom 

severity. We used the Matlab package GLMnet (http://www-

stat.stanford.edu/~tibs/glmnet-matlab) to implement these two methods. First, we used a 

http://www.fmrib.ox.ac.uk/analysis/dualreg/
http://www-stat.stanford.edu/~tibs/glmnet-matlab
http://www-stat.stanford.edu/~tibs/glmnet-matlab
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sparse logistic regression classifier to classify children with ASD and TD children using 

network measures derived from dual regression. Next, we applied sparse linear regression 

to investigate whether measures of network connectivity predict symptom severity in 

ASD.  In this study, conventional methods for classification and regression would have 

resulted in over-fitting because the predictors (number of voxels within each network) 

outnumber the available observations (number of subjects). The sparse methods that we 

used in this study overcome this problem by using regularization. Using GLMnet one can 

apply either lasso (or L1-norm) or elastic net (a combination of L1 and L2-norm) 

regularization 6. This regularization not only overcomes the problem of over-fitting but 

also provides sparse solutions, which will be useful in finding brain regions that 

discriminate between ASD and TD children in the case of classification and the brain 

regions that predict symptom severity in ASD. In the current study, we applied sparse 

methods with lasso regularization to avoid over-fitting and were not intending to identify 

specific brain regions within networks. The lasso penalty (L1-norm), which we used here 

is not suitable for identifying specific voxels in the brain in cases like ours, wherein the 

predictors outnumber the observations. In such situations, this approach  has the 

following limitations 7: 

(a) When the number of predictors (p) is larger than the number of observations (N), 

lasso can at most discover N predictors. 

(b) If the pairwise correlations between the predictors are high (which is generally 

true in neuroimaging data because of high spatial correlations) lasso tends to 

select only one predictor among the relevant predictors. Lasso regularization does 
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not care which one is selected, and also the selected predictor can vary if the 

algorithm is run multiple times. 

Therefore, discovering specific brain regions within networks in these two analyses is not 

reliable using lasso regularization. However, these two limitations can be overcome by 

using elastic net regularization. Elastic net regularization is more suitable in cases where 

identifying specific brain regions is the main focus of the study. Future work will explore 

such regularization approaches. 

Network-based classification: Logistic regression with lasso regularization 

The ten components identified from each individual subject by the dual regression 

analysis served as features to be input into classification analyses. For these analyses, 

individual subject maps for each network were masked with the corresponding network 

originally derived from the group ICA (thresholded at z > 4.3, p < 0.0001). For 

classification, we used a logistic regression classifier with lasso regularization. We used 

the Matlab package GLMnet (http://www-stat.stanford.edu/~tibs/glmnet-matlab) to fit the 

classifier.  We estimated the classification accuracy using a Leave-One-Out Cross 

Validation (LOOCV) procedure. In LOOCV, data are divided into N folds (here, N = 40). 

A classifier is built using N-1 folds, leaving out one sample. The left out sample is then 

classified using this classifier, and the classification accuracy is noted. The above 

procedure is repeated N times by leaving out one sample each time, and finally an 

average classification accuracy is computed on left out folds. This value is termed cross 

validation accuracy, which we report alongside sensitivity, specificity, PPV and NPV for 

each of the ten networks. Permutation tests (10,000 permutations of class labels for each 

http://www-stat.stanford.edu/~tibs/glmnet-matlab
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network) were conducted to arrive at p-values associated with classification accuracies 

for each network.  

To test whether the classifier developed based on the current dataset could 

generalize to a novel dataset, we conducted a dual regression analysis on an independent 

dataset (ASD n = 15, TD n = 15) obtained from publicly available databases (described 

below). Using the salience network template from the original dataset, dual regression 

was performed on the independent dataset to derive features for classification analyses.  

Results 

Comparable large-scale brain networks in children with ASD and TD children examined 
separately 

 In order to compare brain networks between two groups, it is necessary that the 

networks of interest should be present in both groups separately for meaningful 

comparisons to be carried out. To confirm that the ASD and TD groups each separately 

contained the networks present in the group ICA merging all datasets together (ASD + 

TD, Fig. 1), we conducted separate ICA analyses of the ASD and TD groups. These 

analyses suggest that the networks are indeed comparable in ASD and TD. With the 

exception of the visual association network, which was absent in the TD group, all other 

networks of interest were observed in the ASD and TD groups separately. It is also worth 

noting that the dorsal attention network appeared slightly different in terms of spatial 

extent in the ASD and TD groups analyzed separately (eFig. 1, eFig. 2). 

Robustness of findings to motion artifacts 

It has recently been demonstrated that subject motion can induce spurious 

correlation structures in resting state fMRI8. We applied the “data scrubbing” method 
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proposed by Power and colleagues to ensure that motion artifacts were not contributing to 

the group differences we observed. Prior to the dual regression step, for each participant, 

volumes with framewise displacement greater than 0.5 mm and derivative variance 

greater than 0.5% of BOLD signal were identified and excluded, using the parameters 

proposed in 8. As can be seen in eFig. 3, the group difference results are not changed by 

the scrubbing procedure. Of note, in addition to the ASD > TD findings we originally 

report, the scrubbing analysis uncovers an additional ASD > TD finding in the dorsal 

attention network (albeit a very small cluster, not shown). This analysis confirms the 

robustness of our initial findings.  

Replication Analyses  

Fifteen children with ASD and 15 age-, gender-, and IQ-matched TD children 

were identified from public domain research data repositories. Specifically, children with 

ASD were identified by querying the National Database for Autism Research repository 

(NDAR; http://ndar.nih.gov) using the following query parameters: age 7-13; phenotype 

ASD; resting state fMRI data present. This query yielded 15 children with ASD (11 male, 

4 female) ranging in age from 8 to 13 years (10.38 ± 1.34) with a full-scale IQ range of 

73 to 132 (98.6 ± 18.8). Notably, all of the subjects identified belong to one collection 

submitted by F. Xavier Castellanos at New York University. This collection did not 

include data from TD children. To address this issue, we queried the ADHD200 dataset 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/) which contains resting state fMRI data 

from TD children and children with attention-deficit/hyperactivity disorder (ADHD) 

across 8 different sites including Dr. Castellanos’ lab at NYU. The query parameters 

were: site NYU, age 7-13, phenotype TD, resting state fMRI data present. The query 

http://ndar.nih.gov/
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yielded 60 TD children. We used an in-house matching algorithm (described above, 

Group matching algorithm) to select a subset of 15 TD children such that the mean age, 

mean full-scale IQ, and gender distribution were matched to the ASD group. The 

algorithm identified a well-matched subset of 15 TD children (11 males, 4 females) 

ranging in age from 7 to 13 years (10.23 ± 1.65) with an IQ range of 80 to 142 (107 ± 

18.2). Note that IQ data were available for 12 out of 15 children with ASD in this cohort, 

and ADOS and ADI data were available for 10 out of 15 (ADOS Social: 6.8 ± 1.3; 

ADOS Comm: 3.3 ± 1.5; ADI-A: 17.3 ± 5.1; ADI-B: 14 ± 2.8; ADI-C: 3.2 ± 1.3). 

Data analysis was conducted in an identical manner to that described in the main 

manuscript in terms of preprocessing and dual regression ICA. We observed 13 

components of interest in the combined group ICA of this independent dataset (eFig. 4). 

Some of the components initially observed in the original dataset were shown to split in 

the replication dataset. Specifically, the salience network appeared to split into separate 

anterior cingulate and anterior insular components, while the central executive network 

could be see as separate right and left components. In all of these components, ASD > TD 

connectivity was observed (eFig. 5). A few extra-network voxels were observed in two 

networks for the TD > ASD contrast.  

Using the classifier built from the original data, we next tested whether ASD and 

TD could be discriminated in the independent dataset. For the salience network, 83% 

accuracy with 67% sensitivity and 100% specificity (PPV 100%, NPV 75%) was 

observed. 
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eTable 1: Additional Participant Demographics 

 ADOS-S ADOS-C ADI-A ADI-B ADI-C Full-
scale 
IQ 

Current 
Medication 
Status 

DSM-IV 
ADHD 
Problems 

DSM-IV 
Anxiety 
Problems 

ASD 
1 

5 2 26 20 6 98  
Clinical 
Range 

Borderline 
Clinical 
Range 

ASD 
2 

11 7 24 14 8 94 

Claritin, 
Benadryl for 
allergies 

Normal 
Range 

Normal 
Range 

ASD 
3 7 2 10 6 2 111  

Normal 
Range 

Normal 
Range 

ASD 
4 9 4 19 16 2 137 

Sertraline, 
Risperidone 

Clinical 
Range 

Clinical 
Range 

ASD 
5 

7 2 24 21 6 105 

Zyrtec, 
Claratin for 
allergies 

Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
6 

7 6 21 22 11 78  
Clinical 
Range 

Borderline 
Clinical 
Range 

ASD 
7     27 20   100  

Normal 
Range 

Clinical 
Range 

ASD 
8 5 3 29 23 7 98  

Normal 
Range 

Normal 
Range 

ASD 
9 

11 5 18 16 9 112 

Zithromax 
10 mg/ 
Lexapro 5 
mg 

Normal 
Range 

Clinical 
Range 

ASD 
10 

8 2 23 18 3 127  
Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
11 

11 5 16 10 6 97 

Citalopram 
for social 
anxiety/ 
shyness 

Normal 
Range 

Clinical 
Range 

ASD 
12 10 5 26 22 6 141  

Normal 
Range 

Clinical 
Range 



 11 

ASD 
13 

8 3 25 20 7 127  
Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
14  

8 2 13 11 3 124  
Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
15 

4 3 17 8 6 114 

Adderall, 
Celexa, 
Risperidone, 
Invega 

Borderline 
Clinical 
Range 

Normal 
Range 

ASD 
16 9 5 21 11 6 107  

Normal 
Range 

Clinical 
Range 

ASD 
17 

10 2 19 16 10 148 

Concerta 
and 
Methylin 

Clinical 
Range 

Borderline 
Clinical 
Range 

ASD 
18 

10 4 22 19 4 113 Zyrtec 
Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
19 

6 3 18 15 4 123 
Singulair, 
zyrtec 

Normal 
Range 

Borderline 
Clinical 
Range 

ASD 
20 

9 3 10 10 5 97 

Tenex for 
tics 
(Tourette's) 

Normal 
Range 

Clinical 
Range 

 

 

 



eFigure Captions  

 

eFigure 1. Large-scale brain networks identified using ICA: ASD Group. Data from 

twenty children with ASD were combined in a group ICA to identify 25 independent 

components (networks) across all participants in a data-driven manner. Ten of these 

components correspond to previously identified functional networks: (a) salience; (b) 

central executive; (c) posterior default mode; (d) ventral default mode; (e) anterior default 

mode; (f) dorsal attention; (g) motor, (h) visual association, (i) primary visual, and (j) 

fronto-temporal. Maps are displayed at z > 2.3, p < 0.01.  



eFigure 2. Large-scale brain networks identified using ICA: TD Group. Data from 

twenty TD children were combined in a group ICA to identify 25 independent 

components (networks) across all participants in a data-driven manner. Nine of these 

components correspond to previously identified functional networks: (a) salience; (b) 

central executive; (c) posterior default mode; (d) ventral default mode; (e) anterior default 

mode; (f) dorsal attention; (g) motor, (h) primary visual, and (i) fronto-temporal. Maps 

are displayed at z > 2.3, p < 0.01.  



eFigure 3. Brain network hyper-connectivity in children with ASD: Scrubbed Data. 

ASD > TD functional connectivity was observed in six of the ten networks examined: (a) 

salience; (b) posterior default mode; (c) fronto-temporal; (d) motor; (e) visual 

association; and (f) primary visual, even after removing individual frames with high 

motion. Group difference maps were thresholded using threshold-free cluster 

enhancement (TFCE) and p < 0.05. 



eFigure 4. Large-scale brain networks identified using ICA: Replication Cohort. 

Data from thirty children (15 ASD, 15 TD) were combined in a group ICA to identify 25 

independent components (networks) across all participants in a data-driven manner. 

Thirteen of these components correspond to previously identified functional networks: (a) 

ACC salience; (b) insula salience; (c) bilateral central executive; (d) right central 

executive; (e) left central executive; (f) posterior default mode; (g) ventral default mode; 

(h) anterior default mode; (i) dorsal attention; (j) motor, (k) visual association, (l) primary 

visual, and (m) fronto-temporal. Maps are displayed at z > 2.3, p < 0.01. 



eFigure 5. Brain network hyper-connectivity in children with ASD: Replication 

Cohort.  ASD > TD functional connectivity was observed in all of the networks 

examined: (a) ACC salience; (b) insula salience; (c) bilateral central executive; (d) right 

central executive; (e) left central executive; (f) posterior default mode; (g) ventral default 

mode; (h) anterior default mode; (i) dorsal attention; (j) motor, (k) visual association, (l) 

primary visual, and (m) fronto-temporal. A few extra-network voxels were observed in 

two networks: (n) bilateral central executive and (o) anterior default mode for the TD > 

ASD contrast. Group difference maps were thresholded using threshold-free cluster 

enhancement (TFCE) and p < 0.05.  
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