Supplemental Appendix Index

Supplemental Table 1: Compilation of reports on recurrent medulloblastoma reporting the location of recurrence

Supplemental Table 2: Subgroup-specific median time to recurrence and survival post-recurrence across all three cohorts

Supplemental Table 3: Subgroup specific location of metastatic dissemination

Supplemental Table 4: Subgroup specific clinical characteristics by craniospinal irradiation at diagnosis for all 3 cohorts

Supplemental Table 5: Clinical characteristics by pattern of recurrence for all 3 cohorts

Supplemental Table 6: Treatment at diagnosis for all 3 cohorts

Supplemental Figure 1: Principle component analysis of normalized nanoString gene expression data of tumour samples collected at diagnosis compared to matched recurrences according to the following subgroups: A) SHH, B) Group 3, and C) Group 4 and D) NMF consensus clustering of primary and recurrent medulloblastoma (k=3, cophenetic coefficient=1).

Supplemental Figure 2: Secondary high grade glioma in the tumour bed of a previously irradiated Group 4 patient. **A)** H&E staining at diagnosis showing densely packed sheets of small round nuclei with scant cytoplasm consistent with classic histology medulloblastoma. **B)** H&E staining at second surgery showing markedly different morphology with pleomorphic nuclei and more abundant cytoplasm consistent with a high grade glioma. **C)** Heatmap of relative gene expression of 22 nanoString probes normalized to three housekeeping genes (*ACTB*, *GAPDH*, *LDHA*) the sample in **A)** at diagnosis, and **B)** at second surgery. Relative gene expression is plotted on a blue-red gradient where red indicates high expression and blue low expression. Note the paucity of Group 4 markers in the sample from second surgery

Supplemental Figure 3: Subgroup specific recurrence free survival across three non-overlapping cohorts of recurrent medulloblastoma. Kaplan Meier Survival estimates of recurrence free survival for the A) Discovery Cohort, B) Validation Cohort 1, and C) Validation Cohort 2. p-values were determined using the generalized Wilcoxon test across the three subgroups.

Supplemental Figure 4: Median overall survival post-recurrence for all recurrent medulloblastoma. Kaplan Meier Survival estimates of survival post-recurrence for the A) Discovery Cohort, B) Validation Cohort 1 and C) Validation Cohort 2.

Supplemental Figure 5: Incidence of metastatic recurrences across medulloblastoma subgroups. Stacked column graph of local *vs.* metastatic recurrences in the three subgroups across all three cohorts. P-values determined by the Fisher's exact test. Solid areas of the graph represent local recurrence, and diagonally striped areas represent metastatic recurrences.

Supplemental Figure 6: Pattern of recurrence stratified by treatment across medulloblastoma subgroups in Validation Cohort 1 and 2. Validation Cohort 1: A) SHH, B) Group 3, C) Group 4; Validation Cohort 2: E) SHH, F) Group 3, G) Group 4. p-values determined by the Fisher's exact test. Solid areas of the graph represent local tumour bed recurrence and diagonally striped areas represent metastatic recurrences. Note: Two patients in Validation Cohort 1 received focal RT with chemotherapy, one SHH with a metastatic recurrence and one Group 4 with a metastatic recurrence. Both cases are included in the chemotherapy only category.

Supplemental Figure 7: Pattern of recurrence stratified by age across SHH medulloblastomas in the **A**) Discovery Cohort, **B**) Validation Cohort 1, and **C**) Validation Cohort 2. p-values represent Fisher's exact test. p-values determined by the Fisher's exact test. Solid areas of the graph represent local tumour bed recurrence and diagonally striped areas represent metastatic only recurrence.

	Number of Recurrent Medulloblastoma	Clinical Annotation	Molecular Annotation	Matched Tissue from Diagnosis and Recurrence
Current Study 2013	203	1	1	<i>v</i>
Tarbell et al. 2013 ¹	19	v		
Friedrich et al, 2013 ²	18	V		
Lannering et al. 2012 ³	66	J.		
Pizer et al. 2011 ⁴	40	1		
Dunkel et al. 2010 ⁵	25	V		
Chargari et al. 2010 ⁶	19	1		
Srikantha et al. 2010 ⁷	33	1		
Warmuth-Metz et al. 2010 ⁸	40	1		
von Hoff et al, 2009 ⁹	107	J.		
Riffaud et al. 2009 ¹⁰	11	V		
Massimino et al. 2009 ¹¹	17	~		
Gandala et al. 2008 ¹²	8	1		
Gururangan et al. 2008 ¹³	30	1		
Korshunov et al. 2008 ¹⁴	28		1	v
Padovani et al. 2007 ¹⁵	74	1		
Bowers et al. 2007 ¹⁶	46	1		
Abe et al. 2006 ¹⁷	12	V		
Paulino et al. 2006 ¹⁸	31	V		
Tabori et al. 2006 ¹⁹	22	1		
Gajjar et al. 2006 ²⁰	26	1		
Packer et al. 2006 ²¹	62	1		
Grill et al. 2005 ²²	51	1		
Rutkowski et al. 2005 ²³	9	4		
Herrlinger et al. 2005 ²⁴	12	~		
Oyharcabal-Bourden et al. 2005 ²⁵	47	V		
Saunders et al. 2003 ²⁶	53	<i>v</i>		
Taylor et al. 2003 ²⁷	56	V		
Yalcin et al. 2002 ²⁸	31	1		
Chan et al. 2000 ²⁹	17	J		
Bouffet et al, 1998 ³⁰	46	1		
Prados et al. 1995 ³¹	22	1		
Frost et al. 1995 ³²	24	1		
Torres et al. 1994 ³³	23	1		
Wara et al. 1994 ³⁴	54	٠		

Supplemental Table 1: Compilation of reports on recurrent medulloblastoma reporting the location of recurrence

Belza et al. 1991 ³⁵	36	<i>✓</i>	
Silverman and Simpson 1982 ³⁶	31	v	

References:

1. Tarbell NJ, Friedman H, Polkinghorn WR, et al. High-Risk Medulloblastoma: A Pediatric Oncology Group Randomized Trial of Chemotherapy Before or After Radiation Therapy (POG 9031). *J Clin Oncol* 2013.

2. Friedrich C, von Bueren AO, von Hoff K, et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: a prospective observational multicentre study. *Eur J Cancer* 2013; **49**(4): 893-903.

3. Lannering B, Rutkowski S, Doz F, et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. *J Clin Oncol* 2012; **30**(26): 3187-93.

4. Pizer B, Donachie PHJ, Robinson K, et al. Treatment of recurrent central nervous system primitive neuroectodermal tumours in children and adolescents: Results of a Childrens Cancer and Leukaemia Group study. *Eur J Cancer* 2011; **47**(9): 1389-97.

5. Dunkel IJ, Gardner SL, Garvin JH, Goldman S, Shi W, Finlay JL. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. *Neuro-Oncology* 2010; **12**(3): 297-303.

6. Chargari C, Feuvret L, Levy A, et al. Reappraisal of clinical outcome in adult medulloblastomas with emphasis on patterns of relapse. *Br J Neurosurg* 2010; **24**(4): 460-7.

7. Srikantha U, Balasubramaniam A, Santosh V, Somanna S, Bhagavatula ID, Ashwathnarayana CB. Recurrence in medulloblastoma - influence of clinical, histological and immunohistochemical factors. *Br J Neurosurg* 2010; **24**(3): 280-8.

8. Warmuth-Metz M, Blashofer S, Bueren AO, et al. Recurrence in childhood medulloblastoma. *J Neurooncol* 2010; **103**(3): 705-11.

9. von Hoff K, Hinkes B, Gerber NU, et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. *Eur J Cancer* 2009; **45**(7): 1209-17.

10. Riffaud L, Saikali S, Leray E, et al. Survival and prognostic factors in a series of adults with medulloblastomas. *J Neurosurg* 2009; **111**(3): 478-87.

11. Massimino M, Gandola L, Spreafico F, et al. No Salvage Using High-Dose Chemotherapy Plus/Minus Reirradiation for Relapsing Previously Irradiated Medulloblastoma. *Radiation Oncology Biology* 2009; **73**(5): 1358-63.

12. Gandola L, Massimino M, Cefalo G, et al. Hyperfractionated Accelerated Radiotherapy in the Milan Strategy for Metastatic Medulloblastoma. *Journal of Clinical Oncology* 2008; **27**(4): 566-71.

13. Gururangan S, Krauser J, Watral MA, et al. Efficacy of high-dose chemotherapy or standard salvage therapy in patients with recurrent medulloblastoma. *Neuro Oncol* 2008; **10**(5): 745-51.

14. Korshunov A, Benner A, Remke M, Lichter P, Deimling A, Pfister S. Accumulation of genomic aberrations during clinical progression of medulloblastoma. *Acta Neuropathol* 2008; **116**(4): 383-90.
15. Padovani L, Sunyach MP, Perol D, et al. Common strategy for adult and pediatric

medulloblastoma: a multicenter series of 253 adults. *Int J Radiat Oncol Biol Phys* 2007; 68(2): 433-40.
Bowers DC, Gargan L, Weprin BE, et al. Impact of site of tumor recurrence upon survival for children with recurrent or progressive medulloblastoma. *J Neurosurg* 2007; 107(1 Suppl): 5-10.

17. Abe M, Tokumaru S, Tabuchi K, Kida Y, Takagi M, Imamura J. Stereotactic Radiation Therapy with Chemotherapy in the Management of Recurrent Medulloblastomas. *Pediatr Neurosurg* 2006; **42**(2): 81-8.

18. Paulino AC. Collins' law revisited: can we reliably predict the time to recurrence in common pediatric tumors? *Pediatr Hematol Oncol* 2006; **23**(1): 81-6.

19. Tabori U, Sung L, Hukin J, et al. Distinctive clinical course and pattern of relapse in adolescents with medulloblastoma. *Int J Radiat Oncol Biol Phys* 2006; **64**(2): 402-7.

20. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude

Medulloblastoma-96): long-term results from a prospective, multicentre trial. *Lancet Oncol* 2006; 7(10): 813-20.

21. Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. *J Clin Oncol* 2006; **24**(25): 4202-8.

Grill J, Sainte-Rose C, Jouvet A, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. *Lancet Oncol* 2005; 6(8): 573-80.
 Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by

postoperative chemotherapy alone. *N Engl J Med* 2005; **352**(10): 978-86.

24. Herrlinger U, Steinbrecher A, Rieger J, et al. Adult medulloblastoma. *Prognostic factors and response to therapy at diagnosis and at relapse* 2005; **252**(3): 291-9.

25. Oyharcabal-Bourden V, Kalifa C, Gentet JC, et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. *J Clin Oncol* 2005; **23**(21): 4726-34.

26. Saunders DE, Hayward RD, Phipps KP, Chong WK, Wade AM. Surveillance neuroimaging of intracranial medulloblastoma in children: how effective, how often, and for how long? *J Neurosurg* 2003; **99**(2): 280-6.

27. Taylor RE. Results of a Randomized Study of Preradiation Chemotherapy Versus Radiotherapy Alone for Nonmetastatic Medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children's Cancer Study Group PNET-3 Study. *Journal of Clinical Oncology* 2003; **21**(8): 1581-91.

28. Yalcin B, Buyukpamukcu M, Akalan N, Cila A, Kutluk MT, Akyuz C. Value of surveillance imaging in the management of medulloblastoma. *Med Pediatr Oncol* 2002; **38**(2): 91-7.

29. Chan AW, Tarbell NJ, Black PM, et al. Adult medulloblastoma: prognostic factors and patterns of relapse. *Neurosurgery* 2000; **47**(3): 623-31; discussion 31-2.

30. Bouffet E, Doz F, Demaille MC, et al. Improving survival in recurrent medulloblastoma: earlier detection, better treatment or still an impasse? *Br J Cancer* 1998; **77**(8): 1321-6.

31. Prados MD, Warnick RE, Wara WM, Larson DA, Lamborn K, Wilson CB. Medulloblastoma in adults. *Int J Radiat Oncol Biol Phys* 1995; **32**(4): 1145-52.

32. Frost PJ, Laperriere NJ, Wong CS, Milosevic MF, Simpson WJ, Pintilie M. Medulloblastoma in adults. *Int J Radiat Oncol Biol Phys* 1995; **32**(4): 951-7.

33. Torres CF, Rebsamen S, Silber JH, et al. Surveillance scanning of children with medulloblastoma. *N Engl J Med* 1994; **330**(13): 892-5.

34. Wara WMW, Le QTQ, Sneed PKP, et al. Pattern of recurrence of medulloblastoma after low-dose craniospinal radiotherapy. 1994; **30**(3): 551-6.

35. Belza MG, Donaldson SS, Steinberg GK, Cox RS, Cogen PH. Medulloblastoma: freedom from relapse longer than 8 years--a therapeutic cure? *J Neurosurg* 1991; **75**(4): 575-82.

36. Silverman CL, Simpson JR. Cerebellar medulloblastoma: the importance of posterior fossa dose to survival and patterns of failure. *Int J Radiat Oncol Biol Phys* 1982; **8**(11): 1869-76.

Supplemental Table 2: Subgroup-specific median time to recurrence and survival post-recurrence across all three cohorts

	Discovery Cohort	Validation Cohort 1	Validation Cohort 2	p-value
Time to Recurrence (y	ears + 95% CI)			
All Subgroups	1.49 (95% 1.09-1.9)	1.65 (95% 1.3-2.0)	1 (95% 0.91-1.09)	0.0038
SHH	0.96 (95% 0.85-1.08)	1.34 (95% 0.8-1.9)	1 (95% 0.81-1.19)	0.58
Group 3	1.5 (95% 0-3.2)	1.1 (95% 0.6-1.6)	0.92 (95% 0.78-1.06)	0.36
Group 4	3.9 (95% 3.3-4.5)	2.18 (95% 1.5-2.8)	1.17 (95% 0.68-1.66)	0.00018
Survival post-recurren	ce (years + 95% CI)			
All Subgroups	0.63 (95% 0-1.39)	1.68 (95% 0.8-2.6)	1.67 (95% 0.65-2.7)	0·11
SHH	0.14 (95% 0.08-0.2)	0.98 (95% 0.8-1.4)	0.92 (95% 0.04-1.8)	0.0025
Group 3	0.3 (95% 0.14-0.42)	1.1 (95% 0-2.7)	1.75 (95% 0.47-3.03)	0.023
Group 4	2.14(95% 0.99-3.29)	3.7(95% 2-5.5)	1.75(95%0.5-3)	0.89

Times to recurrence reported as Years (95% confidence intervals). p-values for time to recurrence are calculated using the generalized Wilcoxon test and p-values for survival post-recurrence are calculated using the log-rank method.

Supplemental Table 3: Subgroup Specific Location of Metastatic Dissemination

	SHH	Group 3	Group 4	p-value
Toronto Discovery Cohort				0.17
Diffuse Leptomeningeal	2	5	2	
Isolated Supratentorial Metastatic	0	1	6	
Spine Only	0	1	0	
Tumour Bed + Metastatic	1	1	1	
Validation Cohort				0.60
Diffuse Leptomeningeal	4	2	6	
Isolated Supratentorial Metastatic	1	5	7	
Spine Only	2	3	5	
Tumour Bed + Metastatic	2	2	2	
Extraneural	1	2	0	
DKFZ Validation Cohort				0.37
Metastatic	1	26	22	
Tumour Bed + Metastatic	2	10	11	

an 5 conorts			
	Chemo Only	CSI +	p-value
WNT	0	3	
Male Gender		2 (66%)	
Age (years)		10 (6.5-11)	
Histology			
Classic		3	
M+ at Diagnosis		0	
Incomplete Resection		0	
Pattern of Recurrence			
Local		1	
Metastatic		2	
SHH	20	38	
Male Gender	12 (63%)	12 (39%)	0.12
Age (years)	2 (1.4-2.5)	12 (7.2-18.4)*	<0.0001
Histology			0.021
LCA	1 (5.6%)	9 (27%)	
Classic	7 (39%)	17 (50%)	
Desmoplastic	10 (56%)	8 (23%)	
M+ at Diagnosis	4 (20%)	6 (19%)	1
Incomplete Resection	3 (21%)	7 (28%)	0.72
Pattern of Recurrence		``````````````````````````````````````	1
Local	14 (70%)	26 (68%)	
Metastatic	6 (30%)	12 (32%)	
Group 3	20	47	
Male Gender	11 (61%)	36 (78%)	0.21
Age (years)	3 (2.2-3.3)	6 (4.2-10)	<0.0001
Histology			0.54
LCA	7 (35%)	21 (46%)	
Classic	12 (60%)	24 (52%)	
Desmoplastic	1 (5%)	1 (2%)	
M+ at diagnosis	12 (60%)	23 (52%)	0.60
Incomplete Resection	5 (33%)	13 (34%)	1
Pattern of Recurrence			0.6
Local	2 (10%)	4 (9%)	
Metastatic	18 (90%)	43 (92%)	
Group 4	9	58	
Male Gender	5 (57%)	41 (75%)	0.41
Age (years)	49(3:4-5:4)	9 (7-11)	<0.0001
Histology	1.5 (5 1 5 1)	<i>y</i> (<i>i</i> , 11)	1
ICA	1 (20%)	10 (19%)	1
Classic	4 (80%)		
Desmonlastic		1 (2%)	
M+ at diagnosis	1 (11%)	22 (41%)	0.24
Incomplete Resection	1 (11/0)	<u> </u>	1
Dattern of Decurrence	1 (33/0)	17 (3370)	0.032*
L and Only	2 (28.59/)	1 (6.99/)	0.037
Matastatia	<u> </u>	<u>+ (0'070)</u> 55 (02 20/)	
Metastatic	J (02·3%)	JJ (93·2%)	

Supplemental Table 4: Subgroup specific clinical Characteristics by craniospinal irradiation at diagnosis for all 3 cohorts

p-values – Fisher exact test for categorical variables and Mann-Whitney U test for continuous variables. Age represented by median (IQR). *p<0.05 considered significant. Percentages are within columns. LCA=Large Cell/Anaplastic Histology

Notes: *One infant received 18Gy CSI at diagnosis.

Gender missing in 24 cases; Histology missing in 23 cases; M+ Dissemination at diagnosis missing in 22 cases; Extent of Resection missing in 56 cases;

	Local	Metastatic	p-value
	Recurrence	Recurrence	
WNT	1	2	
Male Gender	1	1 (50%)	
Age	10, 11	6.5	
Histology			
Classic	1	2	
M+ at Diagnosis	0	0 (0%)	
Incomplete Resection	0	0 (0%)	
Treatment at Diagnosis			
Chemo Only	0	0	
RT +/- Chemo	1	2	
SHH	44	18	
Male Gender	17 (46%)	7 (50%)	1
Age	8.04 (2.3-16.8)	6.1 (2.4-15.4)	0.98
Histology			0.12
LCA	6 (16%)	5 (31%)	
Classic	21 (55%)	4 (25%)	
Desmoplastic	11 (29%)	7 (44%)	
M+ at Diagnosis	6 (16%)	3 (33%)	0.25
Incomplete Resection	8 (28%)	2 (20%)	1
Treatment at Diagnosis			1
Chemo Only	14 (35%)	6 (29%)	
RT +/- Chemo	26 (65%)	12 (71%)	
Group 3	6	62	
Male Gender	5 (83%)	43 (73%)	1
Age	6.3 (3.1-10.5)	4.6 (3.2-7.1)	0.64
Histology			0.36
LCA	1 (17%)	27 (42%)	
Classic	5 (83%)	32 (54%)	
Desmoplastic	0	2 (3%)	
M+ at diagnosis	0	36 (61%)	0.0028*
Incomplete Resection	1 (25%)	17 (33%)	1
Treatment at Diagnosis			1
Chemo Only	2 (33%)	18 (29%)	
RT +/- Chemo	4 (67%)	43 (71%)	
Group 4	7	63	
Male Gender	5 (83%)	41 (72%)	1
Age	5 (4-10)	8 (6.2-11)	0.35
Histology	· ·	· · ·	1
LCA	1 (20%)	10 (18%)	
Classic	4 (80%)	46 (80%)	
Desmoplastic	0	1 (2%)	
M+ at diagnosis	0	24 (42%)	0.039*
Incomplete Resection	2 (67%)	16 (39%)	0.27
Treatment at Diagnosis	X	× /	0.032*
Chemo Only	3 (43%)	5 (8%)	
RT +/- Chemo	4 (57%)	55 (92%)	

Supplemental Table 5: Clinical Characteristics by pattern of recurrence for all three cohorts

p-values - Fisher exact test for categorical variables and Mann-Whitney U test for continuous variables. Age represented by median (IQR).

*p<0.05 considered significant. Percentages are within columns. CSI=craniospinal irradiation. LCA=Large Cell/Anaplastic Histology

Subdiemental radie of reatment at diagnosis for an three conor	Supple	emental T	able 6:	Treatment	at diagnosi	s for	all three	cohort
--	--------	-----------	---------	-----------	-------------	-------	-----------	--------

	Local	Metastatic	p-value
	Recurrence	Recurrence	
WNT	2	1	N/A
Chemo + RT	2	1	
CSI Dose			N/A
18-24	0	1	
36	1	1	
SHH	44	18	
Chemo Only	14 (36%)	5 (28%)	0.53
Chemo + CSI	21 (54%)	11 (61%)	
CSI Only	4 (10%)	1 (6%)	
Chemo + Focal RT	0	1 (6%)	
Missing	5	0	
CSI Dose			0.44
0 Gy	14 (38%)	6 (33%)	
18-24 Gy	4 (11%)	4 (27%)	
36 Gy	18 (50%)	6 (40%)	
>18Gy dose unk	3 ^a	2	
Group 3	6	62	
Chemo Only	2 (40%)	18 (30%)	0.67
Chemo + CSI	3 (60%)	42 (69%)	
CSI Only	0	1 (2%)	
Focal RT + Chemo	0	0	
Missing	1 ^b	1	
CSI Dose			0.33
0 Gy	2 (50%)	18 (32%)	
18-24 Gy	1 (25%)	6 (11%)	
36 Gy	1 (25%)	33 (57%)	
>18Gy dose unk	1		
Group 4	7	63	
Chemo Only	3 (43%)	3 (5%)	0.022*
Chemo + CSI	4 (57%)	55 (93%)	
CSI Only	0	0	
Focal RT + Chemo	0	1 (2%)	
Missing	0	4 ^c	
CSI Dose			0.014*
0 Gy	3 (43%)	4 (7%)	
18-24 Gy	2 (29%)	12 (21%)	
36 Gy	2 (29%)	40 (71%)	
>18Gy dose unk	0	2	

p-values – Fishers exact test *p<0.05 considered significant. Percentages are within columns. CSI=craniospinal irradiation. RT=Radiation Therapy. a-3 cases are known to have received CSI but dose and chemo unknown b-1 case known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and chemo unknown c – 2 cases known to have received CSI but dose and

С

В

D

А

В

С

А

Discovery Cohort

В

Validation Cohort 1 (Multicentre)

С

Supplemental Figure 5

p=0.31

D

В

С

