
Supporting Information – Mathematical steps to obtain Eq 7 and 8 

The hydration free energy can be decomposed into an electrostatic and non-polar 

components 

∆G = ∆Gele +∆Gnp

 

It is well known that components of the free energy can be path or process dependent. 

We follow a well-defined, widely used process for our decomposition. In simulations as 

well as liquid state theories, the non-polar component can be computed by setting all the 

solute atomic partial charges to zero, keeping the solute Lennard-Jones potential and 

solving the integral equation numerically. Then ∆Gele is computed by subtracting ∆Gnp 

from ∆G. These hydration free energies here are calculated with the analytical chemical 

potential formula for the KH closure of 3D-RISM defined as 
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where kB is the Boltzmann constant, T is the temperature in Kelvin, α is the solvent 

particle label, ρα  is the bulk density of solvent particle α, cα (
v
r ) is the direct correlation 

function, the ∆ρα (
v
r )  is the excess solvent density compared to bulk and is defined as

∆ρα (
v
r )= ρα (

v
r )−ρα  with ρα (

v
r )  the density of solvent particle α, θ(−∆ρα (

v
r ))  is a step 

function that is zero when the solvent density is below bulk density and V is the overall 

volume of integration. 

 

Now, we define a new free energy functional for which the non-polar direct correlation 

function is scaled by a constant γ but only within the solvent exclusion volume  
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In this new integral, we have partitioned the integration domain into the solvent exclusion 

domain Vin and the external volume Vext.  We can now use the following identity 

γ ⋅cα
np(

v
r ) = cα

np (
v
r )− (1−γ ) ⋅cα

np(
v
r )

 

to rewrite the above equation in order to simplify the equations 
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This is eq 7 of the main text. In the development above, we have reassembled the

 

 Vin and Vext components to recover the ∆G plus a correction term that depends on the 

constant γ. Since the domain of Vin is by definition a region of negligible solvent density, 

it is reasonable to set the non-polar solvent density to zero. This simplifies the rightmost 

term of above equation to ½ given that density excess is minus the bulk density 
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and we directly find that ∆G
γ is given by 
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Applying the idea that the water oxygen particle mostly define the exclusion volume 

since this is the largest atom at the center of the molecule, one finds equation 8 from the 

main text 
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We note that in this form, the correction has the functional form in the KH 3D-RISM free 

energy of a bridge function-like correction on the interior of the solute.
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