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1. Background of Targeted Maximum Likelihood Estimation

Estimation with Targeted Maximum Likelihood Estimation (TMLE) requires that the target

parameter be identified as a differentiable function of a component of the underlying data

density. Let Ψ be a differentiable function that takes an argument in a model space M

and value in the space of real numbers (or vectors). Then, our parameter can be defined as

ψ ≡ Ψ(Q), for some Ψ as described, and where Q ∈ M is some component of the underlying

data density, P . Treating the function Ψ as a substitution estimator, we can estimate Q using

a dataset, O, and plug it into the function Ψ so that the estimate of the target parameter

becomes ψ̂ = Ψ(Q̂).

Loosely, the influence curve of a regular, asymptotically linear (RAL) estimator is the

component of the estimator that determines its asymptotic properties. Suppose one observes

n sets of independent, identically distributed subject-specific data, O = {Oi, i = 1, .., n}.

The influence curve of the estimator Ψ(Q̂) is a function of the data and denoted D(P )(O)

(with subject-specific components D(P )(Oi)). The influence curve can be defined as

n1/2[Ψ(Q̂)− ψ] = n−1/2

n∑
i=1

D(P )(Oi) + oP (1)

where oP (i) is a random term than converges to zero in probability (van der Laan and Robins,

2003; Tsiatis, 2006). By an application of the Central Limit Theorem, this implies that

n1/2{Ψ(Q̂)− ψ} →D N [0, E{D(P )D(P )T}]

so that the influence curve provides a large-sample approximation for the variance of the

estimator. Specifically, V ar{Ψ(Q̂)} ≈ 1/nV ar{D(P )}. There is a lower variance bound in

the class of influence curves of RAL estimators, and the unique influence curve that attains

this bound is called the efficient influence curve (Tsiatis, 2006).

The general TMLE procedure is described in van der Laan and Rubin (2006). TMLE is

defined by the procedure of updating the estimate, Q̂, of the component of the data density

used in the substitution estimator Ψ(Q̂) in order to produce inference using the efficient
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influence curve. For example, TMLE is often implemented using the G-computation formula

with carefully constructed updates for the density estimates (Rosenblum and van der Laan,

2010).

Estimators based on the efficient influence curve are favoured for having low variance.

For many causal parameters, estimation with the efficient influence curve is also doubly-

robust (Kang and Schafer, 2007). This means that, while two components of the underlying

density P must be fit, the estimator is asymptotically unbiased if either of the components

is correctly specified. In the examples of the longitudinal TMLEs presented in this paper,

only the exposure mechanism or the outcome models must be correctly specified in order for

the method to be asymptotically unbiased.

2. Target parameter of the IPTW

Here we show that the inverse probability of treatment weighted (IPTW) estimator for the

hazard model used in the simulation study and the example targets the same parameter of

interest as the TMLE.

Let λβ(ā, t) = expit(XT
l,tβ) be the logit-linear model for the hazard. The parameter esti-

mated by the TMLE was defined as

argmaxβ
∑
l,t

Sāl(t− 1) [λāl(t) log(λβ) + {1− λāl(t)} log(1− λβ)] .

Factoring out λāl(t) gives

argmaxβ
∑
l,t

Sāl(t− 1)λāl(t) [{log λβ − log(1− λβ)}+ log(1− λβ)]

= argmaxβ
∑
l,t

Sāl(t− 1)λāl(t)

[
log

{
λβ

(1− λβ)

}
+ log(1− λβ)

]
.

To maximize this expression, the derivative with respect to β can be taken and the resulting
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expression set to zero. This results in∑
l,t

Sāl(t− 1)λāl(t)

[
d

dβ
log

{
λβ

(1− λβ)

}
+

d

dβ
log(1− λβ)

]

=
d

dβ
(λβ)

1

λβ(1− λβ)
{λāl(t)− λβ}

=
d

dβ
logit(λβ) {λāl(t)− λβ} = 0.

Noting that logit(λβ) = XT
l,tβ is the linear specification so that the derivative with respect

to β is the vector of variables in the marginal structural model. The above score equation is

therefore the logistic regression defined on the counterfactuals that is solved by the IPTW-

MSM.

3. Efficient influence function for the MSM for the hazard function

We are interested in estimation of β, which can be implicitly written as a function of the

parameters S = (Sāl(t), for all unique values of ālt) through the score equation:

0 = U(S,β) ≡
∑
l,t

Sāl(t− 1)Xl,t

{
Sāl(t)− Sāl(t− 1)

Sāl(t− 1)
− expit(XT

l,tβ)

}
.

In order to derive the efficient influence function for β, we will use the functional delta

method (van der Vaart and Wellner, 1996). In this context, it states that for a parameter

β = β(S) that can be written as a function of other parameters whose efficient influence

functions, Dāl,t are already known, the efficient influence function for β is equal to

Dβ =
∑
l,t

dβ(S)

dSāl(t)
Dāl,t. (1)

By the implicit function theorem, the derivative in Equation (1) can be obtained using

dβ(S)

dSāl(t)
= −

{
dU(S,β)

dβ

}−1
dU(S,β)

dSāl(t)
. (2)

We then obtain

dU(S,β)

dβ
= −

∑
l,t

Sāl(t− 1)Xl,tX
T
l,t

exp(XT
l,tβ)

{1 + exp(XT
l,tβ)}2

,
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a matrix with dimension r ×R. For each unique exposure pattern ālt,

dU(S,β)

dSāl(t)
= Xl,t −

∑
m:{ālt⊂āmt+1}

Xm,t+1{1 + expit(XT
m,t+1β)},

a column vector of length R. The above summation is taken over allm for which the truncated

exposure pattern ālt is a subset of the pattern āmt+1 (or, equivalently, āmt = ālt) so that in

particular, Sām(t) = Sāl(t). The two above components can be numerically evaluated and

combined to form a column vector of length R using Equation (2).

Substituting these expressions into Equation (2) gives a form for dβ(S)/dβ which can then

be substituted into Equation (1) to produce the form of the efficient influence function for

the parameters of the MSM:

Dβ =

[∑
l,t

Sāl(t− 1)Xl,tX
T
l,t

exp(XT
l,tβ)

{1 + exp(XT
l,tβ)}2

]−1

∑
l,t

Xl,t −
∑

m:{ālt⊂āmt+1}

Xm,t+1{1 + expit(XT
m,t+1β)}

Dāl,t.

The efficient influence function components can be numerically evaluated for each of the n

subjects, producing an influence matrix of dimension n×R, representing the joint influence

components for β.

4. MSM for the log-odds of survival

A model for the log-odds of survival can be described as log[Sāl(t)/{1 − Sāl(t)}] = XT
l,tβ

for all unique patterns ālt, where X
T
l,tβ represents the form of the linear specification of the

model. Let X be the design matrix, potentially including functions of āl and t. Let Xl,t

represent the R-dimensional row of the design matrix corresponding with exposure āl and

time t, represented as a column vector. For example, if the MSM was a linear model with an

intercept and a linear term for time, then for each unique pattern ālt∗ for the time point t∗,

Xl,t∗ = (1, t∗)T . The design matrix can also contain subgroups if S was calculated separately

for the components of a categorical variable, V , and although we do not include conditioning
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in our notation for simplicity, the following development easily extends to such a case. Finally,

let β denote the vector of coefficients corresponding with the columns of the design matrix.

Therefore, since there areM estimates for the survival function, the dimension of the matrix

X is R by M , corresponding with a β-vector of length R.

The parameter β can be defined as

argmaxβE
∑
l,t

log
[
{expit(XT

l,tβ)}I(T
āl>t){1− expit(XT

l,tβ)}I(T
āl6t)

]
,

i.e. the maximum log-likelihood for the logistic model with marginal mean specification

expit(XT
l,tβ).

We are interested in estimation of β, which can be implicitly written as a function of the

parameters S = (Sāl(t), for all unique values of ālt) through the score equation:

0 = U(S,β) ≡
∑
l,t

Xl,t

{
Sāl(t)− expit(XT

l,tβ)
}
; Sāl(0) = 1.

The functional delta method requires the derivation of the components,

dU(S,β)

dβ
= −

∑
l,t

Xl,tX
T
l,t

exp(XT
l,tβ)

{1 + exp(XT
l,tβ)}2

,

a matrix with dimension R×R, and

dU(S,β)

dSāl(t)
= Xl,t,

a column vector of length R. The two above components can be numerically evaluated and

combined to form a column vector of length R using Equation (2).

The efficient influence function can be derived by combining Equation (2) with Equation

(1) and simplifying slightly:

Dβ =

[∑
l,t

exp(XT
l,tβ)

{1 + exp(XT
l,tβ)}2

Xl,tX
T
l,t

]−1 ∑
l,t

Xl,tDāl,t.

Since the influence curve Dāl,t can be numerically evaluated for each of the n subjects, we

obtain a matrix of dimension n×R, representing the joint influence components for β.

Treating each of the estimated values of Sāl(t) as an outcome vector (so that there are M

“observations”, one for each unique exposure pattern and time), fit a logistic regression with
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a chosen linear specification and a logit link. This will produce the point estimate of β. To

obtain variance estimates, fit the efficient influence curve for β for each subject by estimating

each of the components as described in Section 4 and combining them as indicated. Then,

for each of the R columns of the resulting matrix the empirical variance is the estimated

variance for the corresponding MSM coefficient estimate of β.

5. Simulation study

5.1 Data generation

We generated data of the form (W,A1, L1, S1, ..., A5, L5, S5) using known data generating

functions. W is a continuous baseline confounder, At, t = 1, ..., 5 are the binary exposure

variables and St, t = 1, ..., 5 are the survival indicators at each time point. The exposure

generated was monotone (once exposed, always exposed). Lt is a binary variable that acts

as a time-varying confounder. Each variable (unless determined by the monotonicity of

exposure and survival) was generated dependent on the baseline and the covariate values at

the previous time point according to the general rule that exposure reduces the probability

of survival at the next time point as do higher values of Lt. Censoring was not included in

the simulation study.

We used the following function (written in R Statistical Software version 2.13.2, R Devel-

opment Core Team 2011) to generate the data:

data_surv_new<-function(i,ssize){

set.seed(i*5436)

W<-rnorm(n=ssize)/4+1

#TP1

p1<-expit(-4.2+2.5*W)

A1<-rbinom(n=ssize,size=1,prob=p1)
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mu1<-expit(1+W+0.5*A1)

L1<-rbinom(n=ssize,size=1,prob=mu1)

s1<-expit(2+W-0.7*L1-0.5*A1)

S1<-rbinom(n=ssize,size=1,prob=s1)

#TP2

A2<-rep(0,length=ssize)

p2<-expit(-3.2+1*W+1.2*L1)

A2[A1==0&S1==1]<-rbinom(n=sum(A1==0&S1==1),size=1,prob=p2[A1==0&S1==1])

A2[A1==1&S1==1]<-1

mu2<-expit(1+L1+0.5*A2)

L2<-rbinom(n=ssize,size=1,prob=mu2)

S2<-rep(1,ssize)

s2<-expit(1.6+W-0.7*L2-0.5*A2)

S2[S1==1]<-rbinom(n=sum(S1==1),size=1,prob=s2[S1==1])

S2[S1==0]<-0

#TP3

A3<-rep(0,length=ssize)

p3<-expit(-2.9+1*W+1.2*L2)

A3[A2==0&S2==1]<-rbinom(n=sum(A2==0&S2==1),size=1,prob=p3[A2==0&S2==1])

A3[A2==1&S2==1]<-1

mu3<-expit(1+L2+0.5*A3)

L3<-rbinom(size=1,prob=mu3,n=ssize)

S3<-rep(0,ssize)

s3<-expit(2.5+0.8*W-0.7*L3-0.5*A3)

S3[S2==1]<-rbinom(n=sum(S2==1),size=1,prob=s3[S2==1])

S3[S2==0]<-0

#TP4

A4<-rep(0,length=ssize)

p4<-expit(-2+0.5*W+1.2*L3)

A4[A3==0&S3==1]<-rbinom(n=sum(A3==0&S3==1),size=1,prob=p4[A3==0&S3==1])
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A4[A3==1&S3==1]<-1

mu4<-expit(1+L3+0.5*A4)

L4<-rbinom(prob=mu4,size=1,n=ssize)

S4<-rep(0,ssize)

s4<-expit(1.2+W-0.7*L4-0.5*A4)

S4[S3==1]<-rbinom(n=sum(S3==1),size=1,prob=s4[S3==1])

S4[S3==0]<-0

#TP5

A5<-rep(0,length=ssize)

p5<-expit(-1+0.5*W+1.2*L4)

A5[A4==0&S4==1]<-rbinom(n=sum(A4==0&S4==1),size=1,prob=p5[A4==0&S4==1])

A5[A4==1&S4==1]<-1

mu5<-expit(1+L4+0.5*A5)

L5<-rbinom(prob=mu5,size=1,n=ssize)

S5<-rep(0,ssize)

s5<-expit(1+0.5*W-0.7*L5-0.5*A5)

S5[S4==1]<-rbinom(n=sum(S4==1),size=1,prob=s5[S4==1])

S5[S4==0]<-0

#If dead, make missing

A2[S1==0]<-NA

L2[S1==0]<-NA

A3[S2==0]<-NA

L3[S2==0]<-NA

A4[S3==0]<-NA

L4[S3==0]<-NA

A5[S4==0]<-NA

L5[S4==0]<-NA

return(as.data.frame(cbind(W,L1,L2,L3,L4,L5,A1,A2,A3,A4,A5,S1,S2,S3,S4,S5)))

}



Supplementary material 9

5.2 Methods

The TMLE method to estimate the parameters of a marginal structural model (MSM)

for the hazard as described in the main manuscript was evaluated in its ability to predict

S ā=1(5), the probability of survival at the fifth time point under the counterfactual condition

of having all subjects exposed by the first time point (and thereafter, since once exposed

means always exposed in our setting). The TMLE was compared to the Adjusted Kaplan-

Meier Estimator (AKME), the inverse probability of treatment weighting method for the

Kaplan-Meier curve described in Xie and Liu (2005). Both methods were implemented using

logistic regressions to estimate all probabilities. The standard error for TMLE was estimated

using its efficient influence function, and for AKME using the non-parametric bootstrap. The

non-parametric bootstrap was performed by taking 500 resampled data sets with replacement

from the complete data set. Each resampled data set was the same size as the original. The

standard error was found by taking the standard deviation of the estimates calculated from

the resampled data sets. The 95% confidence intervals for TMLE were estimated using the

Normal approximation and the standard error from the efficient influence function. The

confidence intervals for AKME used the 2.5th and 97.5th quantiles of the estimates from 500

bootstrap resamples.

Because of the way the data were generated, the models for each of theQā
t (j)’s in the TMLE

procedure were always misspecified (even when they included the correct set of confounders).

It was possible to correctly specify the exposure model, so the unbiasedness of the TMLE in

this simulation study is a result of the method’s double-robustness.

5.3 Results

In the simulation study, 1,000 data sets were drawn with sample sizes 2,500 and 5,000.

AKME and TMLE were both implemented so that the exposure models were correctly

specified. Table 1 (top) shows the simulation results for the estimation of the counterfactual
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probability of survival at the final time point under a history of always being exposed.

For both sample sizes, AKME and TMLE perform very similarly, both producing unbiased

estimates, and identical mean-squared errors (MSE) and standard errors (SE). Coverage was

also close to 95% for both methods.

[Table 1 about here.]

TMLE was then evaluated in its ability to estimate the parameters of a marginal structural

model for the hazard (see the main manuscript for the procedure). The model evaluated was

logitλāl(t) = β0 + β1cum(ālt) + β2t where β1, the coefficient for the cumulative number of

past times exposed, was the parameter of interest. Since the data was not generated from

this MSM, the β parameters represent a likelihood projection of the survival probabilities

at each time point onto a linear model (Neugebauer and van der Laan, 2007). TMLE was

compared to the IPTWmethod for fitting the hazard MSM described in Hernán et al. (2000),

which estimates an identical parameter (see Section 2). The IPTW was fit with unstabilized

weights and its standard error was estimated using the nonparametric bootstrap (with the

same specifications as for AKME). The MSM results in Table 1 (bottom) indicate that

while both methods produced unbiased inference, for the lower sample size, TMLE had a

slightly higher estimated standard error, resulting in slightly inflated confidence intervals

and coverage. The standard errors for n = 5, 000 coincided for the two methods.

The slightly higher standard errors obtained for TMLE when compared to IPTW can

be explained by the different methods used to estimate the variance. For IPTW, we used

nonparametric bootstrap resampling. For TMLE, we used the influence curve-based sandwich

estimator, which is known to be conservative for misspecified Q-models (van der Laan and

Rose, 2011).
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Table 1
Simulation results for (top) the probability of survival at time five under always-exposed, and (bottom) the coefficient
of cumulative exposure in the hazard model (β1). Correct exposure model used. Estimates taken over 1,000 generated

datasets. True value for survival = 0.274; true value for MSM = 0.099

Method Bias MSE rSE % Coverage

Survival
n = 2500

TMLE <0.001 0.001 0.154 94.3
AKME <0.001 0.001 0.154 94.7

n = 5000
TMLE <0.001 <0.001 0.130 96.0
AKME <0.001 <0.001 0.129 95.9

MSM
n = 2500

TMLE <0.001 <0.001 0.166 96.3
IPTW-MSM <0.001 <0.001 0.160 94.4

n = 5000
TMLE <0.001 <0.001 0.140 96.2
IPTW-MSM <0.001 <0.001 0.134 94.5


