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Web Appendix A

Simulation Comparison of the Procedures

To assess the performance of our proposed models, we replicate pairs of datasets containing

time to event information for the current and historical populations, each with known hazard

functions. Simulations are conducted over an array of hazard function combinations. For each

simulation, we assess model fit on every replicate dataset pair, and compare models based on

average fit over a large number of replicates. Throughout, the replicate dataset pairs contain

possibly right-censored observations with no covariates. For a current dataset of size n, we

generate failure times ti, i = 1, . . . , n, from a survival distribution f . We generate censoring

times ci, i = 1, . . . , n, from a uniform distribution and also impose a maximum follow up

time (C) at which point all observations are censored. The dataset is then compiled in the

usual manner by creating the observed failure times yi = min{ti, ci,C} and event indicators

δi = I{ti < min(ci,C)}, i = 1, . . . , n. The corresponding failure and censoring times for

the historical dataset of size n0 are generated analogously from distribution f0, possibly

different from f . We use the following distributional conventions, E(ζ) denotes an exponential

distribution with mean ζ−1, and W(ψ, ν) ∝ xψ−1 exp(−νxψ) denotes a Weibull distribution.

Our first investigation uses exponential distributions to generate the failure times, con-

ducted by assuming f ∼ E{eα} and f0 ∼ E(1). We randomly draw α from the mixture of

0.5 ∗ U(− log(4), log(4)) and point masses at − log(4), − log(3), − log(2), − log(1.5), log(1),

log(1.5), log(2), log(3), log(4), each with probability .5/9. The censoring times are drawn

from a U(0, 2) distribution with a maximum follow up of C = 1. For the range of α values

in the exponential simulation, the current versus historical hazard ratio ranges .25 to 4 and

S(1) ranges from .78 to .02, respectively. The left panel of Figure 1 displays the true survival

distribution of the current population for select values of α. For our second investigation, we

generate failure times from Weibull distributions, such that f ∼ W{eα, 1} and f0 ∼ W(1, 1).
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For the Weibull simulation, the current versus historical hazard ratio is no longer constant,

rather it varies over the follow up period as follows, eαte
α−1. For α > 0, the hazard ratio

decreases over time, and for α < 0 it increases over time. The larger in absolute value α is,

the more extreme the change in the hazard ratio over the follow up period, but for all α,

S(1) = 0.37. We again draw α from the same mixture distribution and censoring times from

U(0, 2) with C = 1. The right panel of Figure 1 displays the true survival distribution of

the current population for select values of α. For both investigations, a larger absolute value

of α corresponds to greater heterogeneity in the two sources of data as the true survival

distribution of the historical population corresponds to α = 0.

[Figure 1 about here.]

Evaluation Criterion

We compare our novel model to the Kaplan-Meier (K-M) estimator fit to both the current

data alone and the pooled data. We refer to the former as the “Current K-M” and the latter

as the “Pooled K-M”. We also fit the fully Bayesian piecewise exponential (PE) model to

the current data alone and the pooled data. For both of the fully Bayesian reference models,

we use the same time axis partition as our novel model, and employ a random walk prior

process on the log-hazards as defined in Equation (3) of the paper. We refer to these models

as the “Current PE” and the “Pooled PE”. We refer to our novel method as the smoothing

commensurate model, or “Comm PE” for short. To assess model performance, we fit each

model to each replicate dataset pair generated as detailed above. For the K-M estimators, we

save the estimated survival curve and the complementary log-log 95% pointwise confidence

interval for S(.75). For the three Bayesian models, we save the posterior mean survival curve

and the 95% HPD credible intervals for S(.75). For the sake of notational convenience, we

refer only to the posterior survival curve, S(t|D,D0), but in the context of the K-M fits

we mean Ŝ(t). Using these summaries, we calculate four evaluation criteria, integrated error
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(IE), integrated squared error (ISE), interval width, and an indicator for coverage of the true

value of S(.75|α).

Formally, for the mth replicate dataset pair, (D(m),D0
(m)), we define and approximate

IE(m) =

κK∫
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)
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,

m = 1, . . . ,M , where M is the total number of replicate dataset pairs generated. The

approximations are simple Riemannian ones, calculated by partitioning the time axis into G

equally spaced grid points, 0 < z1 < z2 < . . . < zG = κK where ν = κK
G

is the mesh of the

grid.

Armed with M realizations of IE, ISE, credible interval width at S(.75), and indicators for

coverage of the true S(.75) for a range of α values, we can now calculate the expected value

for each given α and α0 = 1. To estimate these expected values, we fit a generalized additive

model for each of the evaluation criteria and each of the models being compared. For IE,

ISE, and credible interval width, we model E(Criterion|α) = f(α), and estimate f(α) with a

natural cubic spline containing 20 knots equally spaced over the range of α values. Estimation

and the choice of the smoothing penalty is conducted by generalized cross validation in the

R package mgcv (Wood, 2006). Similarly, we find the expected coverage probability given

α using the same technique, but with a logistic generalized additive model instead. Note

that these evaluation criteria are classical frequentist measures of fit; they are estimates of

expectations with respect to the sampling distribution, not the posterior distribution.

A final issue ever-present in modern Bayesian work is MCMC convergence monitoring.
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We ran a preliminary investigation of convergence for the piecewise exponential models

and use 200 iterations of burn-in with 20,000 posterior draws for estimation of the reference

models, and 2,000 iterations of burn-in with 20,000 draws for estimation of the commensurate

models. The Bayesian models are fit to each replicate dataset pair by calling JAGS (Plummer,

2003) through R (R Development Core Team, 2011) via the R2jags package. Fitting the five

methods to each replicate dataset pair and calculating the evaluation statistics takes about

30 seconds, but because of the computational burden of iteratively calling an MCMC sampler

like JAGS, we also employed the R package snowfall to run the simulations in parallel, making

this investigation computationally feasible.

Simulation Results

For both investigations we set the number of replicate dataset pairs to M = 2, 000, and used

a G = 2, 000 point grid to estimate (1) and (2). Each current dataset had n = 80 observations

and each historical dataset had n0 = 200 observations. Preliminarily, we investigated an array

of specifications for the spike and slab hyperprior on the inter-source smoothing parameter

τ in the smoothing commensurate prior model. Su, R, and p0 jointly control borrowing

of strength based on evidence of heterogeneity in the data. Given R and p0, a smaller

Su imposes greater borrowing as more evidence for heterogeneity in the data is needed to

prevent borrowing. Increasing p0 also results in borrowing more readily. Whereas, given Su

and p0, when insufficient evidence for heterogeneity exist in the data, a larger R results in

greater inter-source smoothing. The specification we choose to use for the first simulation is

Sl = 0.0001, Su = 2, R = 500, and p0 = 0.99. This combination of hyperparameter values

represents a very large amount of skepticism regarding exchangeability of the two sources

of information, with a prior probability of just 0.01 for strong borrowing. For the second

simulation we set Sl = 0.0001, Su = 2, R = 200, and p0 = 0.9 representing less skepticism
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regarding the exchangeability of the two sources, but borrowing a bit less strength when the

inter-study smoothing parameter falls in the spike.

The results of the first simulation for the K-M and PE models are illustrated in Figure 2.

The IME plot (top left panel) evaluates bias by showing how E(IE|α) changes across α, with

values near zero indicating an unbiased method for a given α. The IMSE plot (top right panel)

evaluates efficiency by showing how E(ISE|α) changes with α, with smaller values indicating

a more efficient method for a given α. The credible interval width plot (bottom left panel) is

a second measure of efficiency, showing the expected 95% HPD credible interval width for a

given α. Finally, the coverage probability plot (bottom right panel) shows the probability that

the credible interval will contain the true S(.75|α) for a given α. As evidenced by the IME and

coverage probability plots, the current K-M estimator is unbiased and the complementary log-

log pointwise confidence interval provides approximate 95% coverage for all α. The current

PE model has minor positive bias and a similar coverage profile as the current K-M. Both

the current K-M and current PE models have similar efficiency profiles, with the PE model

dominating the K-M estimator in both IMSE and interval width. The pooled PE and pooled

K-M have very similar profiles for all the evaluation criteria. Namely, both are highly efficient

and unbiased when the two sources are truly commensurate (i.e., α = 0), but suffer from

great bias and poor efficiency as between source heterogeneity increases (i.e., α increases in

absolute value). Our novel method shows an intermediate profile to the current and pooled

options for all the evaluation criteria. Our method results in efficiency and bias similar to

the pooled PE when the two sources are commensurate (i.e., α ≈ 0) and eventually results

in efficiency and bias similar to the current PE when between source heterogeneity is great.

We note that in simulations not shown here, adjusting the spike and slab hyperparameter

values results in different bias-variance tradeoffs. For instance, increasing the value of p0 will
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result in a more skeptical spike and slab prior and thus, a reduction in the magnitude of bias

and efficiency given intermediate between source heterogeneity (i.e., |α| ≈ .5).

[Figure 2 about here.]

Figure 3 contains the results of the second investigation, where the current and historical

populations have crossing Weibull hazard curves with the same true S(1) value. As in the

exponential simulations, as the absolute value of α is further from 0, the two survival curves

are more dissimilar and the current hazard function changes more sharply across time. The

current K-M estimator again shows consistent nearly zero bias and good nominal coverage,

but poor efficiency when the two sources are commensurate. The pooled K-M again shows

poor bias and efficiency as source heterogeneity grows. The smoothing commensurate PE

model (Comm PE) again closely mirrors the current PE model and imposes far less bias as

the two hazard curves become sufficiently dissimilar, while providing increased efficiency like

the pooled PE model when the two populations are commensurate. The Comm PE model

shows better nominal coverage probabilities on average than in the previous exponential

investigation. Here, as α departs from 0, the random walk prior process employed in the PE

models is no longer smoothing toward the correct model, the result is increasingly poor bias

and efficiency for all the PE models. The PE models can be improved greatly by facilitating

intra-source smoothing of αk toward ραk−1 as in (Fahrmeir and Lang, 2001).

[Figure 3 about here.]

Depending upon the setting, the bias-efficiency profile of the smoothing commensurate

model may not seem appropriate. The advantage of this method is that the investigator

can control the bias-variance profile through the specification of the spike and slab prior

distribution on the inter-source smoothing parameter τ . In simulations not shown here, the

bias-efficiency profile of our method is most sensitive to p0, less sensitive to R and Su,

and insensitive to Sl. In practice, a variety of combinations should be investigated and a
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reasonable bias-efficiency profile should be chosen based on the setting. Thinking of the

IME and IMSE curves as sine waves, increasing p0 will reduce the amplitude and period.

Increasing Su will also reduce the amplitude and period, but will eventually result in greater

bias overall. Finally, increasing R will reduce the amplitude and have little effect on the

period of the IME and IMSE waves, but the amplitude of coverage probability wave will

increase. Calibration of this prior should be done with care, and we do not recommend using

one particular spike and slab specification for every setting.
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Figure 1. True survival distributions of the current data for selected values of α for
the exponential (left panel) and Weibull (right panel) investigations. The true survival
distribution for the historical data in both investigations corresponds to α = 0.
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Figure 2. Evaluation criteria of various models fit to dataset pairs generated from
exponential distributions. The evaluation criteria are integrated mean error (IME, top left
panel), integrated mean squared error (IMSE, top right panel), credible interval width of
S(0.75|D,D0) (bottom left panel), and coverage probability of S(0.75|α) (bottom right
panel)
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Figure 3. Evaluation criteria of various models fit to dataset pairs generated from
Weibull distributions. The evaluation criteria are integrated mean error (IME, top left
panel), integrated mean squared error (IMSE, top right panel), credible interval width of
S(0.75|D,D0) (bottom left panel), and coverage probability of S(0.75|α) (bottom right
panel)


