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S1 Supplementary Methods

This section gives additional technical details about the design and solution techniques for

the model.

S1.1 Model Assumptions and Formulation

Consider the following system of ordinary differential equations, describing the dynamics of

two subpopulations of ASM cells defined in Fig. 2(a,b):

ṗ = λp p

(

1 − p + c

V

)

− λpc p + λcp c , (S1a)

ċ = λpc p − (λcp + λa) c , (S1b)

where p and c are the size of p- and c-subpopulations respectively (e.g. measured in number

of cells per cross-sectional airway wall area), a dot over a variable represents its rate of change

(a time derivative), λp is the proliferation rate, λa is the apoptosis rate, and λpc, λcp are the

switching rates, and V is the total capacity (maximal population size, measured in the same

units as p and c). The system (S1) is subject to the initial conditions p|t=0 = p0 and c|t=0 = c0.

The total size of the ASM population is thus given by

s = p + c . (S2)

We incorporate the effect of short-term inflammatory events by assuming that the switching

rate λcp can change according to the inflammatory status µ which, for instance, could represent

airway eosinophil cell count in sputum per unit volume. The dynamics of µ is described by the

following equation:

µ̇ = −λd µ + a f(t; ω) , f(t; ω) =
∑

i

δ(t − ti), (S3)

∗ Author for correspondence (Igor.Chernyavsky@nottingham.ac.uk).
1 School of Mathematical Sciences, University of Nottingham
2 Mathematical Institute, University of Oxford
3 School of Mathematics, University of Manchester
4 Department of Therapeutics and Molecular Medicine, University of Nottingham



2 Supplementary Material

where δ denotes Dirac’s δ-function, ti is the time of an acute inflammatory event, λd is the decay

rate of the inflammatory factor, a is the magnitude of a single acute inflammatory event, and

ω = 1/E[ti+1 − ti] is the mean event frequency.

All parameter ratios are expressed in terms of a small parameter ε ≡ 1/(λpT ), which is

defined as the ratio of the proliferation timescale 1/λp to the remodelling timescale T ; Table 1

gives the scalings of the corresponding ratios of rates used in the model. It should also be noted

that the choice of the relative orders of magnitude for the rates (Fig. 2b) is not unique; however,

a global rescaling of all the parameters by a power of ε does not affect our main conclusions.

Also, similar results could be obtained by assuming that λpc, rather than λcp, or their ratio, are

functions of µ.

S1.2 Solution Techniques

We use a combination of linear stability analysis, two-time-scale asymptotics and numerical

simulation to characterise qualitatively the dynamics of a population of ASM cells. Direct

numerical simulation of (S1)–(S3) is performed with Matlab ode45 Runge-Kutta solver at the

relative tolerance of 10−6, where individual inflammatory events in (S3) are approximated as a

series of Gaussian “peaks” f(t) ≈ ∑

i exp
{

−λ2
p (t − ti)

2/(2σ2)
}

/
√

2πσ2 for σ = 0.01 ≪ λp/ω.

ASM growth dynamics

For the given assumptions, equations (S1) lead to three distinct asymptotic growth regimes

for a population of ASM cells.

The first regime (case (1) in Fig. 2(b,d)) is characterised by an approximately constant c-

subpopulation and negligible p-subpopulation when the balance between the state-switching,

proliferation and apoptosis
λcp

λpc

∼ λa

λp

(S4)

is satisfied; in the second growth regime (case (2) in Fig. 2(b,d)), the c-subpopulation of ASM

cells exhibits a slow logistic growth, which is significant only in the long term (i.e. months to

years), while the p-subpopulation remains small; in the third regime (case (3) in Fig. 2(b,d)),

the ASM cell population splits into the c- and p-subpopulations of comparable size that grow

logistically in relatively short time-scales (i.e. weeks to months).

Considering the dynamics of the inflammatory status µ for the moderate-to-large speed of

inflammation resolution (IR ≡ λd/λp & 1), an approximate solution to (S3) takes the form of a

series of independent ‘spikes’ (Fig. S1):

µ(t) ≈ a
n
∑

i=0
e−IR λp (t − ti) , (S5)

where n ≡ ⌊ω t⌋ (⌊x⌋ denotes the integer part of x).

Since the time spent by an ASM cell population above the “severe” inflammation sensitivity

threshold µ2 has the greatest impact on the net population growth, we estimate this time

Tsevere = N∆t as the product of the number of events N = Tω over a fixed long-term observation

period T and the time interval ∆t spent above µ2 after each exacerbation of given magnitude
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Figure S1. Schematic of the inflammatory status dynamics µ (solid) given by (S5) for large IR

and a > µ2. Dashed red line indicates the “severe” inflammatory threshold µ2; thick black solid

denotes the time-interval ∆t spent above the threshold.

a > µ2. The growth isoline of total ASM cell population s(T ) = const (see Figs 4 and 6a) can

thus be approximately characterised by Tsevere/T ≡ ω ∆t = const. In particular, for a single

exacerbation, from (S5) we have µ2 ≈ a e−IR λp ∆t, and the time interval is ∆t ≈ (λp IR)−1 log a
µ2

,

subject to the compatibility condition (0 < ∆t ≪ ω−1). The isoline of the ASM population

growth for fast inflammation resolution is thus given by

IR ≈ A

(

ω

λp

)

log

(

a

µ2

)

, IR ≫ 1 , (S6)

where a/µ2 and ω/λp are the relative magnitude and mean frequency of exacerbations respec-

tively, and A ≡ T/Tsevere ≥ 1 is a constant that defines the value of the fold-increase in ASM

population size. The predicted growth isoline (S6) is plotted as the dashed white lines in Fig-

ure 4.


