Journal: Nature Medicine

Article Title:	TARID1B is a specific vulnerability in <i>ARID1A</i> -mutant cancers
Corresponding Author:	Charles W. M. Roberts

Supplementary	Title or Caption				
Item & Number					
Supplementary Figure 1	Specifics of ARID1A class comparison				
Supplementary Figure 2	A residual SWI/SNF complex is present in <i>ARID1A</i> -mutant cancer cells				
Supplementary Figure 3	mRNA levels of SWI/SNF complex subunits				
Supplementary Figure 4	Sucrose sedimentation assay of SWI/SNF complex in OVISE cells				
Supplementary Figure 5	Sucrose sedimentation assay of SWI/SNF complex in TOV21G cells				
Supplementary Figure 6	Sucrose sedimentation assay of SWI/SNF complex in ES2 cells				
Supplementary Figure 7	<i>Arid1a</i> loss creates a dependency on ARID1B-containing SWI/SNF complex in primary cells				
Supplementary Table 1					
Supplementary					
Discussion					

Helming et.al. Supplementary information for:

ARID1B is a specific vulnerability in ARID1A-mutant cancers

Katherine C. Helming^{1,2,3,4}*, Xiaofeng Wang^{1,2,3}*, Boris G. Wilson^{1,2,3}, Francisca Vazquez⁵, Jeffrey R. Haswell^{1,2,3}, Haley E. Manchester^{1,2,3}, Youngha Kim^{1,2,3}, Gregory V. Kryukov⁵, Mahmoud Ghandi⁵, Andrew J. Aguirre^{5,6,7}, Zainab Jagani⁸, Zhong Wang⁹, Levi A. Garraway⁶, William C. Hahn^{6,7}, and Charles W. M. Roberts^{1,2,3,5,7}

¹Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

²Division of Hematology/Oncology, Children's Hospital Boston MA, USA

³Department of Pediatrics, Harvard Medical School, Boston MA, USA

⁴Biological and Biomedical Sciences Program, Harvard Medical School, Boston MA, USA

⁵Broad Institute of Harvard and Massachusetts Institute of Technology, Boston,

Massachusetts, USA

⁶Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

⁷Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA

⁸Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA.

⁹Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA

*These authors contributed equally to this work.

Figure S1. Specifics of ARID1A class comparison

a: Rank list of vulnerabilities identified by screen of Achilles platform cell lines with *ARID1A* class comparison. Position of SWI/SNF subunits are indicated on curve.
b: Effects of ARID1B shRNAs across cell lines in Achilles screen. Cell lines used for validation studies are indicated with arrows

Supplementary Figure 2

Figure S2: A residual SWI/SNF complex is present in ARID1A-mutant cancer cells

a. Expression levels of ARID1A, ARID1B in ES-2, OVISE and TOV21G cells.
b. Immunoblots of nuclear extracts (Input) and immunoprecipitation with the core SWI/SNF subunit SMARCC1 in wildtype (ES-2) and *ARID1A*-mutant (OVISE and TOV21G cell lines).

c. Co-immunoprecipitation of SWI/SNF complex by SMARCC1 from the nuclear extract of 293T cells upon control shRNA or two independent ARID1B shRNAs treatment

Supplementary Figure 3

Figure S3: mRNA levels of SWI/SNF complex subunits

RT-qPCR analysis of the expression of indicated SWI/SNF complex subunits in ES-2, OVISE and TOV21G cells with either control shRNA or two independent ARID1B shRNAs treatment.

Supplementary Figure 4

Figure S4: Sucrose sedimentation assay of SWI/SNF complex in OVISE cells Sucrose sedimentation (20-50%) assay of SWI/SNF complex from OVISE cells treated with either control shRNA or ARID1B shRNA

Helming et.al. Supplementary Figure 5

Figure S5: Sucrose sedimentation assay of SWI/SNF complex in TOV21G cells Sucrose sedimentation (20-50%) assay of SWI/SNF complex from TOV21G cells treated with either control shRNA or ARID1B shRNA

Helming et.al. Supplementary Figure 6

Figure S6: Sucrose sedimentation assay of SWI/SNF complex in ES-2 cells Sucrose sedimentation (20-50%) assay of SWI/SNF complex from ES-2 cells treated with either control shRNA or ARID1B shRNA

Helming et.al. Supplementary Figure 7

Figure S7: *Arid1a* loss creates a dependency on Arid1b-containing SWI/SNF complex in primary cells

a. MTT proliferation assay of control MEFs, *Arid1a* knockout (KO) MEFs, *Arid1b* knockdown (KD) MEFs, or combined *Arid1a* KO and *Arid1b* KD MEFs. * p<0.05. Data are expressed as means \pm S.D.

b. mRNA levels of the SWI/SNF complex subunits upon individual loss of *Arid1a*, ARID1B or both.

c. Sucrose sedimentation (20-50%) assay of SWI/SNF complex from MEFs with indicated treatment.

Helming et.al. Supplementary Table 1

	ARIDIA			ARID1B		
Cell Line	Protein Change	Mutation Classification	Homozygous or Heterozygous?	Protein Change	Mutation Classification	Homozygous or Heterozygous?
23132/87	p.C2081fs	frame shift deletion	heterozygous		WT	
A2780	p.Q1430*	nonsense	heterozygous	p.R869fs	frame shift insertion	homozygous
	p.R1721fs	frame shift deletion	heterozygous			
BL41	p.A1648fs	frame shift insertion	heterozygous		WT	
DV90	p.G1848fs	frame shift deletion	heterozygous		WT	
EFO27	p.G284fs	frame shift deletion	heterozygous	p.G663fs	frame shift deletion	heterozygous
	p.R1722*	nonsense	heterozygous	p.T1639fs	frame shift deletion	heterozygous
HCT15		WT		p.G272*	nonsense	heterozygous
				p.R1606*	nonsense	heterozygous
HEC108	p.R1446*	nonsense	heterozygous	p.L1111fs	frame shift deletion	heterozygous
HEC251	p.S2272*	nonsense	heterozygous	p.Y2100*	nonsense	heterozygous
HEC265	p.1467fs	frame shift deletion	heterozygous		WT	
HEC59	p.Q428*	nonsense	heterozygous	p.T1568M	missense	heterozygous
HEC6	p.G1848fs	frame shift deletion	homozygous	p.G1265fs	frame shift deletion	heterozygous
HS766T	p.Q538*	nonsense	heterozygous		WT	
HS936T		WT		p.Q1657*	nonsense	heterozygous
IM95	p.G1847fs	frame shift insertion	heterozygous	p.403fs	frame shift deletion	heterozygous
JHUEM2	p.C1099fs	frame shift deletion	heterozygous	p.Q1792*	nonsense	heterozygous
	p.G1847fs	frame shift insertion	heterozygous			
JHUEM7	p.R1989*	nonsense	heterozygous	p.R1784Q	missense	heterozygous
LNCAPCLONEFGC	p.G284fs	frame shift deletion	heterozygous	p.E2146*	nonsense	heterozygous
LOXIMVI	p.Q1212*	nonsense	heterozygous		WT	
MFE296	p.M274fs	frame shift deletion	heterozygous	p.K1155fs	frame shift deletion	heterozygous
	*			p.Q1599*	nonsense	heterozygous
NAMALWA	p.G276*	nonsense	heterozygous		WT	
NCIH1436	p.S764fs	frame shift deletion	heterozygous		WT	
NCIH2172	p.F1720fs	frame shift deletion	homozygous		WT	
NCIH2286	p.G927*	nonsense	heterozygous		WT	
NUGC3	p.G1847fs	frame shift insertion	heterozygous		WT	
OCILY19	p.L818fs	frame shift deletion	heterozygous		WT	
OCUM1	p.I1130fs	frame shift deletion	homozygous	p.P865fs	frame shift deletion	heterozygous
OVMANA	p.Q1332*	nonsense	heterozygous		WT	
	p.S2264*	nonsense	heterozygous			
RKO	p.P1114fs	frame shift deletion	heterozygous		WT	
	p.G1848fs	frame shift deletion	heterozygous			
SKOV3	p.Q586*	nonsense	heterozygous		WT	
SNGM	p.G1848fs	frame shift deletion	heterozygous	p.S355fs	frame shift deletion	heterozygous
	p.P2139fs	frame shift deletion	heterozygous			
SNU1	p.A1517fs	frame shift deletion	heterozygous	p.P1049fs	frame shift deletion	homozygous
	p.G1847fs	frame shift insertion	heterozygous			
SNU216	p.Q1458*	nonsense	homozygous		WT	
SNU324	p.E1904fs	frame shift deletion	heterozygous		WT	
SNU423	p.G623*	nonsense	homozygous	p.D1708N	missense	heterozygous
SUDHL5	p.G285*	nonsense	heterozygous		WT	
TOV21G	p.Q548fs	frame shift insertion	heterozygous	p.L1957fs	frame shift insertion	heterozygous
	p.N756fs	frame shift deletion	heterozygous			

Table S1: Co-occurring ARID1A and ARID1B mutations in cell lines. 38% of cell lines with ARID1A mutation also contain ARID1B mutation.

Supplementary Discussion:

Of the cell lines in the Achilles screen, 18 contained inactivating mutations, four contained missense mutations, and eight had 3' UTR mutations. Of note, it is not known whether the missense mutations impair ARID1A function and act as drivers, or whether due to the high rate of mutations in some cancers, or acquired in cell culture, these mutations do not affect ARID1A function and are passenger mutations. The top panel of figure 1b shows the effect of ARID1B knockdown in all 30 Achilles cell lines carrying any ARID1A mutation (inactivating, misssense, or 3' UTR). The bottom panel shows the effect upon only those 18 cell lines that carry inactivating mutations. As can be seen by comparing the two, the lines with missense mutation appear unaffected by ARID1B knockdown. It is unknown whether this lack of dependence occurs because only inactivating ARID1A mutations result in dependence upon ARID1B or because the missense mutations are passenger mutations and would not be expected to result in dependence upon ARID1B.