

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Electronic Structure Analysis of the Oxygen-Activation Mechanism by Fe^{II}- and α-Ketoglutarate (αKG)-Dependent Dioxygenases

Shengfa Ye,^[a] Christoph Riplinger,^[a] Andreas Hansen,^[a] Carsten Krebs,^[b] J. Martin Bollinger, Jr.,^[b] and Frank Neese^{*[a]}

chem_201102829_sm_miscellaneous_information.pdf

Geometric and electronic structures of O2 adducts

The molecular orbital diagram for the septet {FeO₂}⁸ species (Figure S1) displays that of five metal d-based MOs four are singly occupied, and one is doubly occupied. The last two spin-up SOMOs are essentially O₂ π^* -orbitals. By inspection, the bonding MO referred to as Fe-d_{xz} in Figure 5 contains nearly equal contributions from the O₂- π_{ip}^* and the Fe-d_{xz} fragment orbitals (60% Fe *vs* 34% O₂), and so does its singly occupied antibonding partner denoted as O₂- π_{ip}^* . Therefore, the bonding pattern is best rationalized by two resonance electronic structures, both of which are BS(6,0) solutions: a) a HS Fe^{II} center ($S_{Fe} = 2$) ferromagnetically coupled to a triplet O₂ ($S_{O2} = 1$) and b) a HS Fe^{III} ion ($S_{Fe} = 5/2$) bound to an O₂^{-•} radical ligand with $S_{O2} = 1/2$ in a ferromagnetic fashion. Relative to the resting state, it becomes evident that the bound O₂ group is partially reduced upon binding to the iron center. The calculated isomer shift for the septet {FeO₂}⁸ species is 0.83 mm/s, which is between typical values of HS Fe^{II} and HS Fe^{III}, supporting our interpretation that the electronic structure is best described by the above two resonance structures.

Figure S1. Schematic MO diagram for the septet O₂ adduct, quasi-restricted orbitals were employed.

The electronic structure of the quintet $\{FeO_2\}^8$ species may be best interpreted either as a HS ferric ion ($S_{Fe} = 5/2$) antiferromagnetically coupled to a superoxo anion radical ($S_{O2} = 1/2$) referred to as a BS(5,1) solution; or as a HS Fe^{II} ($S_{Fe} = 2$) center coordinated to a neutral 1O_2 approached by a BS(4,0) calculation. Both initial guesses eventually converged to the same BS(5,1) state. As depicted in Figure S2, five SOMOs in the spin-up manifold have predominantly Fe-3d character. In the spin-down set one unpaired electron resides in the π_{op}^* -orbital of the O₂-fragment, thereby yielding an overall quintet state. The other O₂ π^* -orbital is doubly occupied. Thus, the bonding situation defines a

HS Fe^{III} center ($S_{Fe} = 5/2$) that is antiferromagnetically coupled to a ${}^{2}O_{2}^{-\bullet}$ ($S_{O2} = 1/2$) π -radical. Consistent with this description, the calculated Fe isomer shift of 0.56 mm/s is typical of HS Fe^{III}. Inspection of the doubly occupied $O_2 \pi_{ip}^{*}$ -orbital reveals that there is a weak bonding interaction between the uncoordinated O-atom in O_2 and the C2 atom in α KG. However, this weak bonding is absent in the corresponding septet species, which explains the shorter C-O distance in the quintet species relative to that in the septet analogue.

Figure S2. Schematic MO diagram for the quintet O_2 adduct, the spin coupled pair represents unrestricted corresponding orbitals, whereas for the remaining orbitals quasirestricted orbitals were employed.

The electronic structure of the triplet ${FeO_2}^8$ species was calculated using the three different initial guesses, namely, BS(2,0), BS(3,1) and BS(4,2). The BS(2,0) solution may be used to describe an intermediate-spin (IS) Fe^{II} ion ($S_{\text{Fe}} = 1$) bound to a singlet O_2 ligand with $S_{O2} = 0$ or a low-spin (LS) ferrous center ($S_{Fe} = 0$) coordinated to a triplet O_2 ligand with $S_{O2} = 1$. The BS(3,1) state is thought to correspond to antiferromagnetic coupling between an IS ferric center ($S_{\text{Fe}} = 3/2$) and an $O_2^{-\bullet}$ radical ligand ($S_{\text{O2}} = 1/2$). By contrast, a HS Fe^{II} ion ($S_{\text{Fe}} = 2$) that is antiferromagnetically coupled to a ground state O_2 ligand ($S_{02} = 1$) is approached by the BS(4,2) calculation. However, the calculations with the guesses BS(2,0) and BS(3,1) always converged to the same BS(4,2) solution. A molecular orbital diagram obtained from the optimized structure of the triplet ${FeO_2}^8$ species is presented in Figure 7. In the upper valence region one can identify one doubly occupied and four singly occupied metal-based 3d orbitals in the spin-up set and two singly occupied O₂ π^* -orbitals in the spin-down manifold. Two pathways of spin coupling are evident: a π -pathway involving the Fe d_{yz}- and the O₂ π_{op}^{*} -orbitals and a σ pathway consisting of the Fe d_{z2}- and O₂ π_{ip}^* -orbitals. As anticipated, this orbital occupation pattern is best rationalized by a HS ferrous center ($S_{Fe} = 2$) interacting with a neutral triplet O_2 ligand ($S_{O2} = 1$) in an antiferromagnetic manner. Accordingly, the calculated Fe isomer shift of 1.02 mm/s is typical of HS Fe^{II}.

Figure S3. Schematic MO diagram for the triplet O_2 adduct, the spin coupled pair represents unrestricted corresponding orbitals, whereas for the remaining orbitals quasirestricted orbitals were employed.

Figure S4. Schematic MO diagram for the septet Fe^{III}-oxyl species, quasi-restricted orbitals were employed.

Figure S5. Schematic MO diagram for the peroxo-succinate ferrous complex, quasirestricted orbitals were employed.

Figure S6. Schematic MO diagram for ⁵TS2, the spin coupled pair represents unrestricted corresponding orbitals, whereas for the remaining orbitals quasi-restricted orbitals were employed.

Figure S7. Schematic MO diagram for the half-bond intermediate, the spin coupled pair represents unrestricted corresponding orbitals, whereas for the remaining orbitals quasi-restricted orbitals were employed.

Figure S8. Schematic MO diagram for ⁵TS3, the spin coupled pair represents unrestricted corresponding orbitals, whereas for the remaining orbitals quasi-restricted orbitals were employed.

Figure S9. Schematic MO diagram for the quintet Fe^{IV}-oxo complex, quasi-restricted orbitals were employed.