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SI Methods
Restricted Site Associated DNA Library Construction. Total genomic
DNA was extracted from mouse skin samples and seal kidney
samples stored in 95% (vol/vol) ethanol at −20 °C, using
a modified phenol-chloroform protocol (1). Eight hundred
nanograms of DNA from each sample was individually di-
gested with 20 units SbfI, followed by the ligation of P1 adapters
with unique 5-base barcodes for each individual in a restriction site
associated DNA (RAD) library. To minimize errors during se-
quence demultiplexing, at least 2 bases differed between each of the
P1 adapter barcodes. Uniquely barcoded samples were pooled and
then sheared to ∼400 bp on a Covaris S2 sonicator. For each library,
fragments in the size range 300–700 bp were excised from an agarose
gel. Following end repair and A-tailing, a P2 paired-end adapter
(P2 top oligo 5′-/5Phos/CTCAGGCATCACTCGATTCCTCCGA-
GAACAA-3′ and P2 bottom oligo 5′-CAAGCAGAAGACGGCA-
TACGACGGAGGAATCGAGTGATGCCTGAG*T-3′, where *
denotes a phosphorothioate bond; both oligos of the P1 adapters
were also modified with a phosphorothioate bond at the same
position) was ligated to the size-selected DNA. This template
was subjected to 16–17 cycles of PCR enrichment, followed by
agarose gel size selection of the 300 to 700-bp fraction. Three
oldfield mouse (Peromyscus polionotus) and four harbor seal
(Phoca vitulina) RAD libraries were prepared, each comprising
a pool of 14 and 20 individuals, respectively. Each library was
paired-end sequenced on an Illumina HiSeq2000 flow cell. DNA
quantification was carried out using a Qubit fluorometer (In-
vitrogen). Agencourt AMPure XP magnetic beads (Beckman
Coulter) were used for all reaction clean-up stages.

Bioinformatic Analyses. FastQC (www.bioinformatics.babraham.
ac.uk/projects/fastqc/) was used for initial sequence quality as-
sessment. Fluidics problems were encountered during the se-
quencing of the harbor seal RAD libraries. Consequently, the last
36 bases of the paired-end reads required trimming due to very
low sequence quality. These libraries were sequenced a second
time and the two datasets combined for subsequent analyses.
Stacks process_radtags.pl (2) was used to filter the raw fastq se-
quences and to demultiplex the samples according to the P1
barcode. At this stage, 6 oldfield mouse and 20 harbor seal sam-
ples with very low numbers of sequences were removed from the
datasets. The failure of these libraries was due to the inadvertent
use of faulty P1 adapters for these samples.
Our pipeline for obtaining single nucleotide polymorphism

(SNP) genotypes from the Illumina sequence data involved: (i)
clustering of sequences into RAD contigs using Stacks version
0.9999 (2); (ii) using the resulting contigs as a reference genome
for mapping the sequences within BWA version 0.6.2 (3); and (iii)
SNP calling using the GATK UnifiedGenotyper version 2.1.13 (4).
The GATK UnifiedGenotyper (4) uses a Bayesian genotype like-
lihood model outputting accurate posterior probabilities of there
being a segregating variant allele at each locus as well as for the
genotype of each sample. Thus, our pipeline allowed us to take
advantage of the more sophisticated and statistically more rigor-
ous genotyping and SNP calling framework implemented within
the GATK UnifiedGenotyper compared with Stacks.
i) Clustering of sequences into RAD contigs using Stacks. Sequences from
all individuals were combined to create a “superparent”. Stacks
denovo_map.pl (2) was then used with the superparent acting as
a pseudoparent to de novo assemble read 1 sequences into RAD
tags. To remove potentially spurious and uninformative tags, the
tags generated above were filtered to include only those present

in at least two individuals. The paired-end reads corresponding to
each of the remaining tags were assembled into contigs using the
Stacks sort_read_pairs.pl and exec_velvet.pl scripts (2). Stacks
constructs individual tags based on read 1 sequence similarity but
does not take into account the paired-end sequence. Therefore,
as an additional quality-control step aimed at eliminating any tags
potentially comprising more than one locus, only tags for which a
single contig was assembled from the paired-end reads were re-
tained. A reference genome was then constructed from these tag
sequences together with their corresponding paired-end contigs,
padded out with Ns corresponding to the average size of the
RAD library sequenced.
ii) Mapping sequences using the reference genome. The original demul-
tiplexed paired-end fastq files were mapped back to the reference
genome using BWA (3) with default parameters. SAMtools (5) was
used for SAM and BAM file manipulation. Picard MarkDuplicates
version 1.89 (http://picard.sorceforge.net) was used to remove PCR
duplicates. Individual BAM files for each sample were merged into
a single file.
iii) Genotype calling.Genotypes were called using the GATK Uni-
fiedGenotyper (3) with default parameters (6) except with –hets
0.01 to reflect the higher levels of polymorphism found in these
mammals compared with humans. As linked SNPs are non-
independent, only tags containing a single polymorphic SNP
were retained for subsequent analyses. This measure also guards
against the inclusion of false-positive SNPs assembled from
paralogous loci (7).

Calculation of RAD-Based Heterozygosity and Relatedness. An indi-
vidual’s heterozygosity was calculated as the total number of
heterozygous tags divided by the number of tags for which the
individual was called. Because not all individuals were called for
the same loci, we then standardized individual heterozygosity val-
ues by the mean average observed heterozygosity in the population
of the subset of loci successfully typed in the focal individual
[standardized multilocus heterozygosity (sMLH)] (8). Pairwise re-
latedness (RAD allele sharing) was calculated as the total number
of identical alleles between individuals (zero, one, or two per tag)
divided by twice the number of tags considered.

Filtering of Genotypes. To maximize the signal-to-noise ratio, we
explored a range of filtering thresholds based on genotype quality
(GQ), low coverage (LC), and mapping quality (MQ). The
oldfield mouse pedigree was used to assess the impact of such
filtering by measuring the strength of correlation between (i)
pedigree-based inbreeding coefficient f and RAD heterozygosity
and (ii) pedigree-based relatedness and RAD allele sharing
(Figs. S3 and S4, respectively). Studies often use a GQ threshold
>30. However, applied to our data we observed a strong system-
atic bias whereby individuals with lower sequence depth of
coverage, and therefore fewer called SNPs, tended to be called
as highly heterozygous. This probably reflects the fact that
a heterozygote genotype can be called with higher confidence
at low depth of coverage, but to be confident of a homozygote
call requires a larger number of reads. To further explore this
bias at low sequence coverage, we randomly subsampled the
oldfield mouse RAD sequences across all individuals to mimic
50% and 25% of the actual coverage (Figs. S3 and S4, re-
spectively).
Filtering based on MQ thresholds had a negligible impact on

the data. However, the r2 between pedigree-based f and RAD
heterozygosity declined with a combination of increasing GQ
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and decreasing LC threshold, and this pattern was exacerbated
when average sequencing depth was reduced by subsampling the
data (Fig. S3). The correlation between pedigree-based re-
latedness and RAD allele sharing was also optimal for filtering
thresholds of GQ ≥ 1 and a LC ≥ 2, as was the number of RAD
tags retained (Fig. S4). Consequently, to provide the best bal-
ance between SNP quality and the number of tags retained for
analysis, we filtered genotypes obtained from GATK using a
GQ ≥ 1, corresponding to the maximum-likelihood genotype,
and a LC ≥ 2 to generate the final oldfield mouse SNP dataset.
The same filtering criteria were subsequently used for the har-
bor seals.

Computation of g2 with Large Numbers of Loci. Notations. In the
following we denote Hik an indicator variable that takes a value
of 1 if individual k is heterozygous at locus i and 0 otherwise.
When there are missing data, some of these values are unknown;
in that case we denote ~Hik a variable that takes a value of 1 if the
individual k is known to be heterozygous at locus i and 0 if its
genotype at locus i is either unknown or known to be homozy-
gous. xik denotes a constant that takes a value of 1 if the datum is
missing for individual k at locus i and 0 otherwise. The number of
individuals in the sample is N, whereas the number of loci is L.
We denote ~hk =

PL

i=1
~Hik the number of known heterozygous loci

in an individual k, μi =EðHiÞ the expectation of true heterozy-
gosity at locus i in the population, and mi and mij the proportions
of individuals with missing data at locus i and at both locus i and
locus j, respectively. We also define ~μi = ð1−miÞμi the expected
proportion of individuals that can be successfully scored and found
heterozygous in the sample. The ms are considered as constants
characteristic of a sample, whereas the μs are population charac-
teristics. Hats (⋀) denote estimates based on data from a sample,
rather than true values of population parameters.
Estimation of g2 . The estimates of g2 presented by David et al. (9)
and implemented in the RMES software are (correcting for ty-
pographical errors)
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in the absence of missing data, which becomes

in the presence of missing data.
These estimates are impractical when the number of loci is high

because of the double summations over all pairs of loci. With
15,000 loci, the double summations take of the order of 0.2 × 109

computation steps (which then have to be multiplied by N2 as
there are also double summations over individuals). To reduce

computation time, we can look for an estimate of g2 that takes
a more computationally tractable form. The basic assumption
behind this computation (which also underlies the previous
estimates) is that the distribution of true heterozygosity is the
same in missing data as in nonmissing data. In such conditions
it can be shown that
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The αs represent the extent to which missing loci are clustered
within individuals; in the absence of clustering (i.e., missing data
occur independently at all loci), they would be zero; however, it
is possible that some individuals may have more missing data
than others on average, for example because they would have
a lower coverage in the RAD sequences. α is the weighted aver-
age of the αijs.

Unbiased estimators of the ~μis are simply found by averaging
over individuals as b~μi = 1
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Unbiased estimators of A, B, and C can then be obtained as
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with Ĵ = 1
N

XN

k=1
~h
2
k −
XL

i=1
b~μi,

B̂=
1

N − 1

24XN
k=1

~h
2
k −

1
N

 XN
k=1

~hk

!2
35

Ĉ=
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All these equations do not require double summation over loci
and can therefore be computed in a reasonable time. However,
computing α in principle requires this double summation. To
avoid this, one can assume that the αijs do not vary a lot between
pairs of loci. With this approximation we obtain the following
estimate of α,
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in which
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This does not require a double summation over loci and the final
estimate of g2 reads

ĝ2 =
1+
�
B̂− Ĉ
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Â

1+bα − 1:

This estimate is slightly biased because the ratio of expectations
differs from the expectation of a ratio; however, with reasonable
conditions (say, when individuals have on average 10 or more
successfully scored, heterozygous loci), the bias is very small (9). The
SD can be obtained by bootstrapping over individuals. All of the
computations were done using a Mathematica program, available
upon request (a Windows executable will be made available in the
near future).

Bayesian Analysis of Population Structure. Population structure can
potentially generate spurious associations between heterozygosity
and fitness (10, 11). Consequently, we used the program Struc-
ture 2.3.4 (12) to conduct a Bayesian cluster analysis of the
harbor seal RAD dataset, comprising 60 individuals genotyped
at 14,585 SNPs. Structure uses a maximum-likelihood approach

to determine both the most likely number of distinct genetic
groups (K) in a sample and the probability of membership of
every individual to each of these K groups. We ran three in-
dependent runs for K = 1–5 using 100,000 Markov chain Monte
Carlo iterations after a burn-in of 100,000 steps and specifying an
admixture model with correlated allele frequencies. To be able
to detect even a very weak signature of population structure, we
implemented the LOCPRIOR model, using age class as prior
information to assist the clustering (13). LOCPRIOR tends to
outperform the standard model when populations are weakly
differentiated, providing more accurate estimates of K together
with improved group membership coefficients.

SI Results
Oldfield Mouse. RAD sequencing of 36 oldfield mice generated
265 million paired-end reads, of which 231 million contained
appropriate barcodes and the RAD restriction site and passed
initial quality filtering, resulting in an average of 6.4 million
paired-end reads per individual, varying between 2.5 million and
11 million (Fig. S1). These reads were assembled into 79,360
contigs, which, after eliminating those with multiple paired-end
contigs, were reduced to 63,129. Average contig length including
the paired end was 479 bp (±117-bp SD). A total of 16,060
contigs (25.4%) mapped to the mouse genome, using an e-value
threshold of 1e−10 to reveal a broad genomic distribution (Fig.
S2A). Following SNP calling and filtering as described in SI
Methods, 13,198 RAD tags were retained for downstream anal-
ysis, each containing a single biallelic SNP. Most of these SNPs
were called in the majority of individuals (Fig. S5).

Harbor Seal. RAD sequencing of 60 harbor seals generated 374
million paired-end reads, of which 280 million contained ap-
propriate barcodes and the RAD restriction site and passed initial
quality filtering, resulting in an average of 3.6 million paired-end
reads per individual, varying between 0.6 and 9.6 million (Fig. S1).
These data were assembled into 126,121 contigs, of which 83,148
were retained after filtering out those with multiple paired-end
contigs. Average contig length including the paired end was 538
bp (±135-bp SD). A broad genomic distribution was inferred by
mapping 44,961 contigs (35.6%) to the dog genome (Fig. S2B).
Following SNP calling and filtering, 14,585 RAD tags were re-
tained for downstream analyses, most of which were present in
the majority of sequenced individuals (Fig. S5).
Differences in heterozygosity between old and young seals

could potentially arise if the two age classes originated from
separate populations rather than from the same panmictic pop-
ulation. Consequently, we subjected our harbor seal RAD dataset
to Bayesian cluster analysis, using the program Structure (12). The
average log-likelihood value increased from K = 1 to K = 2 and
thereafter leveled off (Fig. S8A). Although this appears to indicate
support for the presence of more than one genetic cluster, in-
spection of the membership probabilities to each of the inferred
clusters shows that no signal of population structure is present,
with all individuals being predominantly assigned to a single cluster
(each bar is almost entirely blue in color) and the remaining
clusters making negligible contributions (Fig. S8 B–E).

1. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual
(Cold Spring Harbor Lab Press, Cold Spring Harbor, NY) 2nd Ed.

2. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks:
Building and genotyping loci de novo from short-read sequences. G3 1(3):171–182.

3. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler
Transform. Bioinformatics 26:589–595.

4. McKenna A, et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.

5. Li H, et al. (2009) The Sequence alignment/map (SAM) format and SAMtools.
Bioinformatics 25:2078–2079.

6. DePristo M, et al. (2011) A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat Genet 43:491–498.

7. Sanchez CC, et al. (2009) Single nucleotide polymorphism discovery in rainbow trout
by deep sequencing of a reduced representation library. BMC Genomics 10:599.

8. Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated
selection against inbred Soay sheep in a free-living, island population. Evolution
53(4):1259–1267.

9. David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates
from imperfect population genetic data. Mol Ecol 16:2474–2487.

10. Slate J, Pemberton JM (2006) Does reduced heterozygosity depress sperm quality in
wild rabbits (Oryctolagus cuniculus)? Curr Biol 16:R790–R792.

11. Luquet E, et al. (2011) Heterozygosity-fitness correlations among wild
populations of European tree frog (Hyla arborea) detect fixation load. Mol Ecol
20:1877–1887.

Hoffman et al. www.pnas.org/cgi/content/short/1318945111 3 of 11

www.pnas.org/cgi/content/short/1318945111


12. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using
multilocus genotype data. Genetics 155:945–959.

13. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population
structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332.

Fig. S1. Distribution of the number of RAD sequence reads obtained across samples. Oldfield mice and harbor seals are denoted by solid and shaded bars,
respectively.

Fig. S2. Inferred chromosomal distributions of (A) oldfield mouse and (B) harbor seal contigs (details in SI Methods). The oldfield mouse contigs were BLASTed
against the mouse (Mus musculus) genome and the harbor seal contigs were BLASTed against the dog (Canis familiaris) genome, using an e-value cutoff of 1e−10.
Chromosomal distributions are based on a bin size of 1,000 bp with the x axis being scaled relative to the largest chromosome and the maximal y axis being
10 contigs per bin.
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Fig. S3. The effect of varying two genotype filtering thresholds, genotype quality and low-coverage cutoff, on the strength of the relationship between
pedigree-based inbreeding coefficient f and RAD heterozygosity in the oldfield mouse. A, C, and E show the r2 between pedigree f and RAD heterozygosity
based on 100%, 50%, and 25% of the sequence data, respectively, across all 36 individuals. B, D, and F show the corresponding median numbers of RAD tags
retained for analysis. Local regression, implemented using the “locfit” package in R, was used to fit smoothed splines to the raw datasets.
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Fig. S4. The effect of varying two genotype filtering thresholds, genotype quality and low-coverage cutoff, on the strength of the relationship between
pedigree-based relatedness and RAD allele sharing in the oldfield mouse. A, C, and E show the correlation coefficient between the two relatedness measures
based on 100%, 50%, and 25% of the sequence data, respectively. B, D, and F show the corresponding median numbers of RAD tags retained for analysis. Note
that fewer RAD tags in general are retained for allele sharing because each tag needs to be called in more than one individual to be counted. Local regression,
implemented using the locfit package in R, was used to fit smoothed splines to the raw datasets.
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Fig. S5. Summary of 13,198 SNPs called in the oldfield mouse (A and C) and 14,585 SNPs called in the harbor seal (B and D). A and B show the distribution of
SNP coverage across individuals. The majority of SNPs were called in most of the individuals. C and D show corresponding minor allele frequency (MAF)
distributions.
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Fig. S6. Relationship between the number of randomly subsampled SNPs and g2 (±SD) in (A) oldfield mice and (B) harbor seals.
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Fig. S7. Relationship between the number of randomly subsampled SNPs and (A) the mean (± SEM) correlation in sMLH among markers, with black circles
denoting oldfield mice and red circles harbor seals, and (B) the mean (± SEM) percentage deviance explained by sMLH in the generalized linear model (GLM) of
parasite infection in harbor seals.
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Fig. S8. Results of the Structure analysis of the harbor seal RAD dataset. (A) Average log-likelihood value values based on three replicates for each value of K,
the hypothesized number of clusters in the data. (B–E) Clustering results shown separately for K = 2–5. Each individual is represented by a vertical bar par-
titioned into different segments, the lengths of which indicate the probability of membership in the different clusters.
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Fig. S9. Spatial distribution of the harbor seals in our sample set. Young seals with lungworm, young seals without lungworm, and old seals without
lungworm are denoted by open, shaded, and solid sections, respectively. The diameter of each pie chart corresponds to the number of seals tested per location.
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