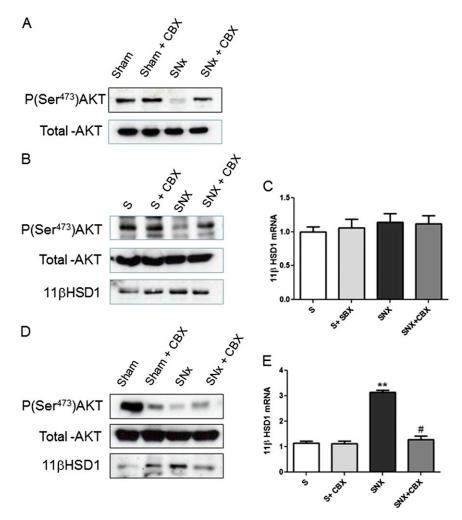
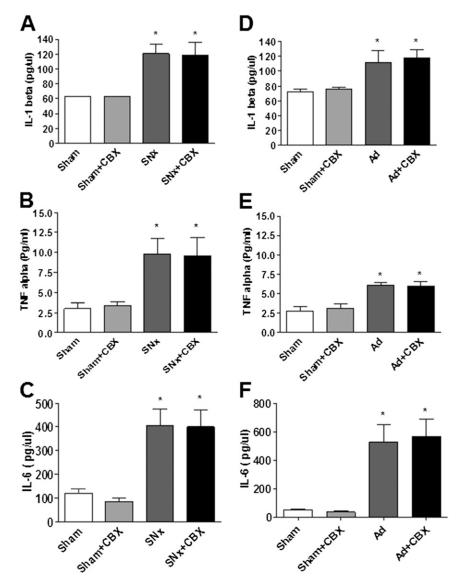
Supporting Information


Chapagain et al. 10.1073/pnas.1312436111

SI Methods


Hepatic Glucocorticoid Assay. Whole rodent livers were snap-frozen and stored at -80 °C, then weighed and homogenized in RIPA buffer using a rotary-blade homogenizer. The homogenate was deproteinated immediately with 6% perchloric acid (1:1), then centrifuged at $10,000 \times g$ for 15 min. The supernatant was then collected separately and neutralized 1:1 with 1 M potassium hydroxide. The supernatant after centrifugation $(10,000 \times g,$ 10 min) was then passed through a Chromabond C18 column (Macherey-Nagel) using (i) two times 3 mL methanol, (ii) 3 mL H_2O , (*iii*) 3 mL 50 mM HCl, (*iv*) 6 mL homogenate, (*v*) 3 mL 50 mM HCl, and (vi) 13 mL H₂O. The steroids were collected using 6 mL 80% methanol (vol/vol), evaporated to dryness using a vacuum drier and reconstituted using 200 µL 80% methanol. Reconstituted hepatic steroids were quantified by HPLC using an apparatus consisting of a PU-2089 Quarternary Low Pressure Gradient Pump and MD-2010 Photometric Diode Array UV/Vis Detector (195-650 nm) from Jasco Instruments Ltd. The pump was connected to an AS-2055 Autosampler. Peak area was calculated by EZChrome Elite software (Agilent Technologies UK Ltd). For both systems, a reversed-phase ACE C18 column (0.46 $cm \times 15$ cm; 5 µm-particle size) from Hichrom Ltd. was used. The column was equilibrated with a solvent mixture consisting of 70:30 water:acetonitrile (CH₃CN). After injection, the solvent mix was adjusted so that at 7 min, the mixture was 60:40 water:CH₃CN. Between 7 and 9 min the gradient was increased further so that 0:100 water:CH₃CN was reached. Between 9 and 10 min the solvent mix was maintained at 0:100 water:CH₃CN. Between 10 and 11 min the original solvent mix of 70:30 water:CH₃CN was reapplied. UV chromatograms for 220 and 240 nm were analyzed and a 240:220 ratio was obtained and compared against steroid standard data. The AUC was analyzed on Prism 5.0 software to quantify unknown steroids against calibration curves.

 $11\beta\text{-Hydroxysteroid}$ Dehydrogenase Type 1 Reductase Activity. Oxoreductase 11β-HSD1 "reductase" activity was measured using methods as previously described by Hu et al. (1). Snap-frozen rodent livers from the experimental groups were lysed with RIPA buffer, then treated with 1% Triton X-100 in assay buffer containing 100 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mM MgCl₂, 250 mM sucrose, and 20 mM Tris·HCl. Enzyme assays were performed using 50 mg sample protein incubated for 1 h at 37 °C in 600 μ L of assay buffer containing NADPH (500 μ M) and 11-dehydrocorticosterone (2,000 nM). Immediately following incubation, the samples were placed in a boiling water bath for 5 min. 11 β -Hydroxysteroid dehydrogenase type 1 (11 β HSD1) oxoreductase activity was then assessed by measuring corticosterone production using a corticosterone EIA kit (Cayman Chemical), and enzyme activity was expressed in units of pg of corticosterone produced per milligram of protein per minute.

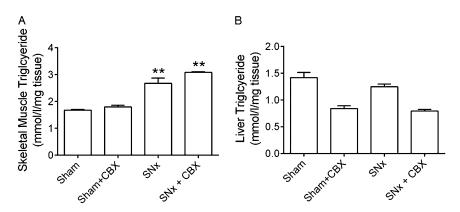

Hu A, et al. (2009) Th2 cytokine-induced upregulation of 11beta-hydroxysteroid dehydrogenase-1 facilitates glucocorticoid suppression of proasthmatic airway smooth muscle function. Am J Physiol Lung Cell Mol Physiol 296(5):L790–L803.

Fig. S1. Uremia-induced changes in peripheral insulin signaling and 11 β HSD1 levels. Experimental uremia was induced in rats by SNx (n = 8 per group). CBX (50 mg·kg⁻¹.d⁻¹) or vehicle was administered by oral gavage for 2 wk. (A) Hepatic phospho(Ser⁴⁷³)-AKT and total-AKT protein; (B) skeletal muscle protein levels of phospho(Ser⁴⁷³)-AKT, total-AKT, and 11 β HSD1; (C) skeletal muscle 11 β HSD1 mRNA; (D) epididymal white adipose tissue protein levels of phospho(Ser⁴⁷³)-AKT, total-AKT, and 11 β HSD1; and (E) epididymal white adipose tissue 11 β HSD1 mRNA. Western blots are representative (n = 4). Data are expressed as mean \pm SEM. Statistically significant differences between sham and SNx are indicated by **P < 0.01. Statistically significant effects of CBX treatment are indicated by #P < 0.05.

Fig. 52. Uremia induces elevated plasma cytokine levels. Experimental uremia was induced in rats by Subtotal nephrectomy (SNx) or adenine-feeding (Ad) (n = 8 per group). Carbenoxolone (CBX) (50 mg·kg⁻¹·d⁻¹) or vehicle was administered by oral gavage for 2 wk. Plasma levels of IL-1 β (A and D), TNF α (B and E), and IL-6 (C and F) were measured in SNx and Ad models, respectively. Data are expressed as mean \pm SEM *P < 0.05 vs. sham or sham with CBX.

Fig. S3. Uremia induced changes in liver and skeletal muscle triglyceride levels. Experimental uremia was induced in rats by SNx (n = 8 per group). CBX (50 mg·kg⁻¹·d⁻¹) or vehicle was administered by oral gavage for 2 wk. (A) Hepatic triglyceride levels, (B) Skeletal muscle triglyceride levels. Data are expressed as mean \pm SEM. Statistically significant differences between sham and SNx are indicated by **P < 0.01. Statistically significant effects of CBX treatment are indicated by *P < 0.05.

Table S1. Serum markers of renal failure in SNx rats

Laboratory parameters	Sham	SNx	Sham + CBX	SNx + CBX
Serum sodium, mmol/L	135.9 ± 5.3	136.1 ± 3.2	135.1 ± 2.6	138.4 ± 2.2
Serum potassium, mmol/L	4.9 ± 0.9	4.8 ± 0.5	4.4 ± 0.7	4.6 ± 0.2
Serum urea, mmol/L	5.5 ± 0.3	30.7 ± 3.7*	8.7 ± 0.4	28.5 ± 1.4*
Serum creatinine, µmol/L	38.1 ± 1.0	139.3 ± 10.9*	41.9 ± 2.0	133 ± 6.5*
Proteinuria, g/24 h	0.27 ± 0.04	$3.6 \pm 0.3*$	0.21 ± 0.4	$3.3 \pm 0.5*$

Renal dysfunction was determined in subtotal SNx rats (n = 8 per group) by measurements of serum levels of creatinine, urea, sodium, and potassium and urine levels of protein. Data are expressed as mean \pm SEM. *P < 0.05 vs. sham.

Table S2. Serum markers of renal failure in adenine-fed rats

PNAS PNAS

Laboratory parameters CON		Ad	CON + CBX Ad + CBX	
Serum sodium, mmol/L	136.5 ± 4.5	135.7 ± 0.2	139.5 ± 1.4	141 ± 1.2
Serum potassium, mmol/L	4.46 ± 0.2	5.24 ± 0.1*	4.75 ± 0.2	5.7 ± 0.1*
Serum urea, mmol/L	7.3 ± 0.4	86.4 ± 8.5*	6.31 ± 0.7	92.1 ± 4.0*
Serum creatinine, µmol/L	39.6 ± 2.1	325 ± 20.4*	37.48 ± 0.7	314.2 ± 18.3*
Proteinuria, g/24 h	0.1 ± 0.03	3.2 ± 0.3*	0.024 ± 0.1	$3.7 \pm 0.7*$

Renal dysfunction was determined in adenine-fed rats (n = 8 per group) by measurements of serum levels of creatinine, urea, sodium, and potassium and urine levels of protein. Ad, adenine; CON, control. Data are expressed as mean \pm SEM. *P < 0.05 vs. sham (Table S1).

Table S3. Serum markers of renal failure in adenine-fed 11βHSD^{-/-} mice

Laboratory parameters	WT-CON	WT-Ad	11βHSD1 ^{-/-} -CON	11βHSD1 ^{-/-} -Ad
Serum sodium, mmol/L	148.1 ± 3.2	147.2 ± 3.6	145.1 ± 4.1	142.8 ± 2.6
Serum potassium, mmol/L	5.6 ± 0.7	5.4 ± 1.2	5.6 ± 0.9	5.3 ± 0.09
Serum urea, mmol/L	11.4 ± 2.5	43.7 ± 1.5*	10.6 ± 3.3	44.9 ± 2.6*
Serum creatinine, µmol/L	22.2 ± 2.2	68.6 ± 4.3*	23.0 ± 3.1	67.7 ± 3.7*

Renal dysfunction was determined in adenine-fed mice (n = 8 per group) by measurements of serum levels of creatinine, urea, sodium, and potassium. WT, wild type. Data are expressed as mean \pm SEM. *P < 0.05 vs. control diet.

Table S4. Baseline characteristics of SNx group

Measurements	Sham	SNx	Sham + CBX	SNx + CBX
Body weight, g	307.1 ± 92.6	303.7 ± 48.3	313.1 ± 19.6	302.1 ± 8.4
Food intake, g/24 h	27.1 ± 1.6	24.7 ± 2.2	26.8 ± 1.4	24.6 ± 2.6
Mean HR, bpm	403.8 ± 23.2	416.3 ± 36.1	415.0 ± 26.3	423.8 ± 38.2
MBP, mmHg	112.0 ± 38.1	135.5 ± 12.0	119.7 ± 26.4	152.0 ± 13.9

Measurements in experimental models of uremia (n = 8 per group). Data are expressed as mean \pm SEM. bpm, beats per minute; HR, heart rate; MBP, mean blood pressure.

Table S5. Baseline characteristics of Ad group

Measurements	CON	Ad	CON + CBX	Ad + CBX
Body weight, g	325.4 ± 41.0	308.6 ± 41.0	312.6 ± 10.7	299.7 ± 8.3
Food intake, g/24 h	25.0 ± 2.1	21.5 ± 3.1	23.5 ± 2.5	20.5 ± 4.5
Mean HR, bpm	436.5 ± 14.3	445.3 ± 36.1	434.4 ± 16.9	440.6 ± 21.4
MBP, mmHg	122.0 ± 27.9	147.9 ± 25.5	129.5 ± 28.9	151.2 ± 15.9

Table S6. Serum markers of renal failure in adenine-fed rats treated with specific $11\beta HSD1$ inhibitor UE2316

Laboratory parameters	CON + vehicle	Ad + vehicle	Ad + UE2316
Serum sodium, mmol/L	145.2 ± 3.0	144.8 ± 3.4	142.2 ± 5.5
Serum potassium, mmol/L	5.3 ± 0.3	4.9 ± 0.7	4.9 ± 0.6
Serum urea, mmol/L	8 ± 2.4	73.6 ± 12.8***	72.6 ± 14.1***
Serum creatinine, µmol/L	47.3 ± 11.6	301.7 ± 15.9***	291.1 ± 15.8***
Serum albumin, g/L	25.8 ± 2.8	24.6 ± 2.6	25.1 ± 2.1

Renal dysfunction was determined in adenine-fed mice (n = 8 per group) by measurements of serum levels of creatinine, urea, sodium, potassium, and albumin. Data are expressed as mean \pm SEM. ***P < 0.05 vs. control diet.

Table S7. Quantitative PCR primer and probe sequences

PNAS PNAS

Gene	Gene accession no.	Dir	Primer sequence	nM	Nanograms of cDNA per well
Cytosolic PEPCK	XM_342593	Fwd	GTCATCCGCAAGCTGAAGAA	300	10
		Rev	GCTTTCGATCCTGGCCACA	300	
		Probe	6-FAM-CAACTGTTGGCTGGCTCTCACTG ACC-TAMRA	100	
PPARγ coactivator 1alpha	NM_031347	Fwd	TCTGGAACTGCAGGCCTAACTC	300	10
		Rev	AGCTTTGGCGAAGCCTTGA	300	
		Probe	6-FAM-ACGACTCCTCCTCATAAAGCCAACC AAGATAA-TAMRA	100	
3-hydroxy-3-methylglutaryl	NM_03134	Fwd	TCAGCTGTACCATGCCGTCTAT	300	10
CoA reductase		Rev	CAGGCTTGCTGAGGTAGAAGGT	300	
		Probe	6-FAM-ATCGGAACCGTGGGTGGTGGG-TAMRA	100	
Fatty acid synthase	NM_017332	Fwd	AATACAAAATGGAGCCACTGCAT	300	10
		Rev	AACTTGAGGCCGGGATGTT	300	
		Probe	6-FAM-CGGTGCATCCGCCCCTCACT-TAMRA	100	
Acetyl CoA carboxylase	NM_022193	Fwd	CCGGTGCCCTCAACAAGT	300	10
		Rev	AACTCCGTTGTGCATTATCTG	300	
		Probe	6-FAM-TCGGGAAGTATACACCTCCAACAA	100	
			TCAGCTT-TAMRA		
11βHSD1	NM_017080.2	Fwd	GCTTTTGCAGAGCGATTTGTT	300	10
		Rev	CAGTCCACCCAAGAGCTTTCC	300	
		Probe	Sybr green	50	

Accession numbers refer to data deposited in NCBI Reference Sequence database. Dir, direction.