1 Supplemental information

2

3 Bioinformatic multi-species DNA damage proteome analysis

4 For identification of the ortholog sequences related to DNA damage presented in this 5 paper, we first started by using the list of human DNA damage proteins catalogued by 6 the group of Rick Wood 7 (http://sciencepark.mdanderson.org/labs/wood/DNA Repair Genes.html#Human%20D 8 NA%20Repair%20Genes). We then run BLAST using all the human DNA damage 9 proteins (129 proteins listed in Table 1 to 5 and Table S1 to S3) on the proteome of all 10 the selected species used in this work (2). The version of the build for the proteome of 11 every species is presented in supplementary Table 1. For two proteins to be considered 12 ortholog, we are requiring that they both are in the top 5 reciprocal best BLAST hits of 13 one another. For example, when BLASTing the human protein A on the proteome of 14 L.major, if the best hit is protein B then we required that protein A is in the top 5 BLAST 15 hits of protein B in the human proteome. This is what we defined as reciprocal top 5 16 best BLAST hits (4). We tried different values for the length of the top list to assign the 17 reciprocal best hit and we obtained maximal concordance at top 5 with a maximum 18 concordance of 80% for the know human yeast ortholog proteins. We repeated this 19 entire reciprocal top 5 best BLAST hits using the yeast DNA damage proteome (94 20 proteins listed in Table 1 to 5 and Table S1 to S3). We performed exactly the same 21 analysis as for the human DNA damage proteome. We had to merge the results from 22 the two analyses on the basis of the list of common ortholog proteins between human 23 and yeast. For the merged analysis we used a color code that is depicted in Fig.S2. A

1

24 white square means that neither the human nor the yeast analyses were able to retrieve 25 an ortholog. A green square means that only the human analysis was able to retrieve 26 and ortholog. A red square means that only the yeast analysis was able to retrieve an 27 ortholog. When both the human and yeast analysis identified the same ortholog, this is 28 depicted by a yellow square. If the yeast and human analysis did not retrieve the same 29 ortholog proteins this is depicted by a black square. For this study we used two different 30 stringency values for the E-values of BLAST algorithm 0.001 and 0.05. We considered 31 0.001 as being stringent and 0.05 as being a more permissive approach to identify 32 ortholog sequences. The analyses as well as the figures were generated using custom 33 Python and R scripts.

34

35 The approach we used to retrieve ortholog is different from the majority of BLAST 36 analyses performed in the papers that we will further refer to in the remaining of this 37 review. The major difference reside in the reciprocal portion of the BLAST analysis in 38 which we require the putative ortholog protein to also mapped back to the query protein 39 in human (or yeast). This step is critical to insure the putative ortholog correspond really 40 to the best human ortholog protein. It is thus highly plausible that our systematic 41 approach will miss some of the previously ortholog proteins identified by the community. 42 We also mentioned we used two different stringent E-value cutoffs and this could also 43 explain that our systematic analysis will miss previously identified ortholog due to the 44 use of different BLAST E-values.

45

2

46 The phylogenetic analysis of the RAD51 paralogs was done in two steps. The first step 47 was to obtained and aligned the sequences of all the putative paralog sequences for 48 human, S cerevisiae, S pombe and the Trypanosamatids. We aligned the sequences 49 using MAFFT and generated a phylogenetic tree from the alignement using Neighbor-50 joining with the JTT model and 500 bootstrap resampling (3). The database TriTrypDB-51 4.1 (1) was used for L.infantum (8241 proteins), L.major Friedlin (8412), L.braziliensis 52 (8357), T.bruceiTreu927 (9826), T.congolense (13459), T.cruzi Esmeraldo-Like 53 (10342),T.vivax (11885)03-Feb-2011and 54 downloads.yeastgenome.org/sequence/S288C reference/orf protein/ for S.cerevisiae 55 (5887), 19-Mar-2012 - ftp.sanger.ac.uk/pub/yeast/pombe/Protein data/ for S.pombe 56 (5143) and 15-Oct-2012 - ftp.ncbi.nih.gov/refseg/H sapiens/mRNA Prot/ for human 57 (34677).

58

59 Supplemental References

60 Aslett, M., C. Aurrecoechea, M. Berriman, J. Brestelli, B. P. Brunk, M. Carrington, 1. D. P. Depledge, S. Fischer, B. Gajria, X. Gao, M. J. Gardner, A. Gingle, G. Grant, O. 61 62 S. Harb, M. Heiges, C. Hertz-Fowler, R. Houston, F. Innamorato, J. Iodice, J. C. 63 Kissinger, E. Kraemer, W. Li, F. J. Logan, J. A. Miller, S. Mitra, P. J. Myler, V. 64 Nayak, C. Pennington, I. Phan, D. F. Pinney, G. Ramasamy, M. B. Rogers, D. S. Roos, C. Ross, D. Sivam, D. F. Smith, G. Srinivasamoorthy, C. J. Stoeckert, Jr., S. 65 Subramanian, R. Thibodeau, A. Tivey, C. Treatman, G. Velarde, and H. Wang. 66 67 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic 68 Acids Res 38:D457-462. 69 2. Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. 70 L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 71 **10:**421. 72 3. Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software 73 version 7: improvements in performance and usability. Molecular biology and 74 evolution 30:772-780. 75 4. Stuart, J. M., E. Segal, D. Koller, and S. K. Kim. 2003. A gene-coexpression network

for global discovery of conserved genetic modules. Science **302**:249-255.

FIG S1 Summary for the bioinformatics analyses using BLAST E-value < 0.05. A) Complete hierarchical clustering using Euclidean distance of the list of retrieved DNA damage proteins in the different species analysed in the bioinformatics analysis. B) Barplots presenting the different percentage of proteins retrieved in the different DNA damage categories for all the species analyzed using E-value < 0.05. C) Heatmaps presenting the retrieved proteins (red square) for all the species in all the different DNA damage categories. Blue rectangles surrounded proteins that are only detected partially in the Trypanosamatids.

FIG S2 The top 5 reciprocal best BLAST hits approach used in this paper to retrieve bioinformatically the ortholog proteins in the other species. We used both the human and the yeast DNA damage proteome containing respectively 129 and 94 proteins. The arrows represent the reciprocal best hits approach and the different squares represent the different outcomes following the yeast and human analysis.

Base excision repair (BER)

FIG S3 Base excision repair homologs in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Others proteins involved in DNA repair

FIG S4 Other proteins involved in DNA repair in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Mismatch excision repair (MMR)

FIG S5 Mismatch repair homologs in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Non-homologous end-joining

FIG S6 Non-homologous end joining homologs in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Homologous recombination

FIG S7A Homologous recombination proteins in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

FIG S7B The phylogenetic analysis of the RAD51 family proteins in human, *S.cerevisiae, Leishmania infantum, Leishmania major, Trypanosoma brucei,* and *Trypanosoma cruzi.*

Meiosis

FIG S8 Putative meiotic proteins in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Direct reversal of damage

FIG S9 Direct reversal of damage proteins in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Nucleotide excision repair (NER)

FIG S10 Nucleotide excision repair proteins in Trypanosomatids. White boxes represent no mapping; red represents human mapping only; green represent budding yeast mapping only; yellow represent both human and yeast mapping; If the yeast and human analysis did not retrieve the same ortholog proteins this is depicted by a black square.

Table S1 List of Trypanosomatids genes involved in direct repair included functions and ID.

Name (other name)	Fonction	Gene ID							
		Human	S.cerevisiae	S.pombe	L.infantum	L.major	T.brucei	T.cruzi	
MGMT	O6-methylguanine-methyltransferase	NM_002412	YDL200C	SPAC1250.04c(B)	LinJ.26.1800(B)	LmjF.26.1800 (B)	Ть09.160.1490 (Ү)	Tc00.1047053508347.20 (B)	
ABH2 (ALKBH2)	Dioxygenase able to revert N-alkyl adducts	NM_001001655	х	SPAP8A3.02C (H)	х	х	х	х	
ABH3 (ALKBH3)	Dioxygenase able to revert N-alkyl adducts	NM_139178	х	х	х	х	х	х	
Photolyase	Photoinduce repair of cyclobutane pyrimidine dimers	NM_004075	YOR386W	х	LinJ.33.0480 (B)	LmjF.33.0470 (B)	Tb927.10.11100 (B)	Tc00.1047053511127.260 (B)	

(H) represents found from human homolog only(Y) represents found from yeast homolog only(B) means both found from human and yeast homologs(X) means no homolog

Table S2 List of Trypanosomatids genes involved in nucleotide excision repair (NER) included functions and ID.

	Fonction	Gene ID							
Name (other name)		Human	S.cerevisiae	S.pombe	L.infantum	L.major	T.brucei	T.cruzi	
XPA (p31, Rad14)	Xeroderma_pigmentosum A: damage recognition	NM_000380	YMR201C	SPBC649.03(B)	Х	Х	Х	х	
XPC (p106, Rad4)	Xeroderma pigmentosum C: recruitment of TFIIH	NM_004628	YER162C	SPCC4G3.10c(B)	LinJ.35.3500(B)	LmjF.35.3450(H)	Tb09.211.3040(B)	Tc00.1047053507011.140(B)	
HR23B (p58, Rad23)	In complex with XPC, recruitment of TFIIH	NM_005053	YEL037C	SPBC2D10.12(B)	LinJ.30.3350(B)	LmjF.30.3300(B)	Tb927.6.4650(B)	Tc00.1047053511731.10(B)	
TFIIH-XPB (ERCC3/p89/Rad25/Ssl2)	Transcription factor : DNA unwinding	NM_000122	YIL143C	SPAC17A5.06(B)	LinJ.32.4070(B)	LmjF.32.3920(B)	Tb927.3.5100(H) Tb11.01.7950(Y)	Tc00.1047053511527.20(B)	
TFIIH-XPD (ERCC2/p80/Rad3)	Transcription factor : DNA unwinding	NM_000400	YER171W	SPAC1D4.12(B)	LinJ.24.2370(B)	LmjF.24.2280(B)	Tb927.8.5980(B)	Tc00.1047053511075.30(B)	
TFIIH-Tfb1 (p62, GTF2H1)	Transcription factor : DNA unwinding	NM_005316	YDR311W	SPAC16E8.11c(B)	х	х	ТЬ11.01.1200	х	
TFIIH-Tfb2 (p52,GTF2H4)	Transcription factor : DNA unwinding	NM_001517	YPL122C	SPBC13G1.13(B)	LinJ.36.0860(B)	LmjF.36.0800(B)	Tb927.10.5210(B)	Tc00.1047053510297.80(B)	
TFIIH-Ssl1 (p44, GTF2H2)	Transcription factor : DNA unwinding	NM_001515	YLR005W	SPCC1682.07(B)	LinJ.24.1750(B)	LmjF.24.1680(B)	Tb927.8.6540(B)	х	
TFIIH-TSP1	Trypanosomatid-specific compenent of TFIIH	х	х	х	LinJ.20.0470	LmjF.20.0400	ТЬ927.1.1080	Tc00.1047053511423.40	
TFIIH-TSP2	Trypanosomatid-specific compenent of TFIIH	х	х	х	LinJ.32.0910	LmjF.32.0860	Tb11.01.5700	TcIL3000.11.14400	
TFIIH-Tfb4 (p34, GTF2H3)	Transcription factor : DNA unwinding	NM_001516	YPR056W	SPBC30B4.07c(B)	х	х	ТЬ11.01.7730	х	
TFIIH-Tfb5	Trypanosomatid-specific compenent of TFIIH	х	х	х	х	х	Tb10.61.2600	х	
XPG (ERCC5, p135, Rad2)	\underline{X} eroderma pigmentosum $\underline{G}: 3^{1}$ -incision of the lesion	NM_000123	YGR258C	SPBC3E7.08c(B)	LinJ.35.3640(B)	LmjF.35.3590(B)	Tb09.211.2870(B)	Tc00.1047053507009.120(B)	
ERCC1 (p33, Rad10)	Structure-specific DNA repair endonuclease for the 5'-incision	NM_001983	YML095C	SPBC4F6.15c (B)	х	х	Tb927.7.2060 (H)	Tc00.1047053510165.20 (H)	
XPF (ERCC4,p112,Rad1)	\underline{X} eroderma <u>pigmentosum</u> <u>F</u> : 5'-incision of the lesion	NM_005236	YPL022W	SPCC970.01(B)	LinJ.08.0150(B)	LmjF.08.0140(B)	Tb927.5.3670(B)	Tc00.1047053509779.10(B)	
RPA1 (p70)	<u>Replication protein A 1</u> : ssDNA binding heterotrimer	NM_002945	YAR007C	SPBC660.13c(B)	LinJ.28.1940(B)	LmjF.28.1820(B)	Tb11.01.0870(B)	х	
RPA2 (p32)	Replication protein A2 : ssDNA binding heterotrimer	NM_002946	YNL312W	SPCC1753.01c (B)	LinJ.15.0310 (H)	LmjF15.0270(H)	Tb927.5.1700 (B)	х	
RPA3 (p11)	<u>Replication protein A 3</u> : ssDNA binding heterotrimer	NM_002947	YJL173C	х	х	х	х	х	
Pole	DNA polymerase filling the gap	NM_006231	YNL262W	SPBC25H2.13c(B)	LinJ.35.4430(B)	LmjF.35.4360(B)	Tb09.211.1820(B)	Tc00.1047053506147.180(B)	
Polô	DNA polymerase filling the gap	NM_002691	YDL102W	SPBC336.04(B)	LinJ.33.1790(B)	LmjF.33.1690(B)	Tb927.2.1800(B)	Tc00.1047053510259.6(B)	
LIG I (CDC9)	DNA ligase I : ligation	NM_000234	YDL164C	SPAC20G8.01(B)	LinJ.30.3490(B)	LmjF.30.3440(B)	Tb927.6.4780(B)	Tc00.1047053506945.80(B)	
DDB1 (XPE, p127)	Damaged DNA binding 1 : heterodimer involved in damage recognition and stimulate excision	NM_001923	х	SPAC17H9.10c(H)	LinJ.30.3770(H)	LmjF.30.3710(H)	Tb927.6.5110(H)	Tc00.1047053509165.49(H)	
DDB2 (p48)	Damaged DNA binding 2 : heterodimer involved in damage recognition and stimulate excision	NM_000107	YDL156W	х	х	х	х	х	
CSA (ERCC8, Rad28)	Cockayne's syndrome A:E3 ubiquitin-protein ligase complex	NM_000082	YDR030C	SPBC577.09(B)	LinJ.23.1400(Y)	х	х	х	
CSB (ERCC6, Rad26)	<u>C</u> ockayne's syndrome <u>B</u> : Responsible for ubiquitination and proteolysis of RNAPII	NM_000124	YJR035W	SPCP25A2.02c(B)	LinJ.14.0900(B)	LmjF.14.0840(B)	Tb927.7.4080(B)	Tc00.1047053508675.20(B)	
Def1	Responsible for ubiquitination and proteolysis of RNAPII	NM_004084	YKL054C	SPBC354.10(Y)	х	х	х	х	
HuF2 (TTF2)	<u>Hu</u> man homolog of $\underline{f}actor \underline{2}$: release RNAPI and II stalled in TCR	NM_003594	YBR114W	SPBC582.10c(H)	LinJ.28.0810(H)	LmjF.28.0760(H)	Tb11.010530(H)	х	

(H) represents found from human homolog only(Y) represents found from yeast homolog only(B) means both found from human and yeast homologs(X) means no homolog

Table S3 List of others Trypanosomatids genes involved in DNA repair included functions and ID.

Name (other name)	Fonction	Gene ID							
		Human	S.cerevisiae	S.pombe	L.infantum	L.major	T.brucei	T.cruzi	
53BP1(Crb2, Rad9)	Tp53 binding protein 1 : DNA damage sensor, limit resection	NM_001141980	Х	SPBC342.05 (H)	Х	Х	Х	Х	
ATM (Tel1)	<u>A</u> taxia- <u>t</u> elangiectesia- <u>m</u> utated kinase: checkpoint-specific damage sensor	NM_000051	YBL088C	SPCC23B6.03c (B)	LinJ.02.0100 (B)	LmjF.02.0120 (B)	Tb927.2.2260 (B)	Tc00.1047053506533.34 (B)	
ATR (Rad3, Mec1)	ATM and Rad3-related kinase : checkpoint-specific damage sensor	NM_001184	YBR136W	SPBC216.05 (B)	LinJ.32.1520 (B)	LmjF.32.1460 (B)	Tb11.01.6300 (B)	Tc00.1047053506223.120 (B)	
ATRIP (Rad26,Dcd2/Lcd1/Pie1)	ATR interacting protein : recruit ATR	NM_130384	YDR499W	Х	Х	Х	Х	х	
Chk1	\underline{C} heckpoint \underline{k} inase $\underline{1}$: Effector kinase, an ATR substrat	NM_001274	YBR274W	SPCC1259.13 (B)	х	Х	х	Х	
Chk2 (Cds1, Rad53)	$\underline{Ch}eckpoint \underline{k}inase \underline{2}$: Effector kinase, an ATM substrat	NM_007194	YPL153C	SPCC18B5.11c (B)	LinJ.17.0070 (Y)	LmjF.17.0060 (Y)	Tb927.7.6220 (Y)	Х	
Claspin (Mrc1)	Sensor which monitors the integrity of DNA replication fork	NM_022111	YCL061C	SPAC694.06c (B)	Х	Х	Х	х	
Hus1 (Mec3)	<u>Hydroxyu</u> rea <u>sensitive 1</u> : heterotrimeric 9-1-1 checkpoint complex, subunits of PCNA-like sensor of damaged DNA	NM_004507	YLR288	SPAC20G4.04c (H) SPBC27B12.05 (Y)	х	Х	х	Тс00.1047053466823.10 (Н)	
MDC1 (NFBD1)	Mediator of DNA-damage checkpoint 1	NM_014641	х	SPBC582.05c (H)	LinJ.34.4070 (H)	LmjF.34.4240 (H)	Х	Х	
p53	Tumor suppressor protein 53: regulation of the cell cycle	NM_000546	х	Х	х	х	х	х	
PARP-1	Poly (ADP) ribose polymerase-1 : sensor of DNA strand break	NM_001618	Х	SPBC2A9.07c (H)	LinJ.25.0770	LmjF.25.0740	Tb927.5.3050 (H)	Тс00.1047053510173.90 (Н)	
PARP-2	\underline{P} oly ($\underline{A}DP$) <u>r</u> ibose <u>p</u> olymerase-2 : sensor of DNA strand break	NM_005484	х	Х	Х	Х	х	Х	
PARP-3	\underline{P} oly ($\underline{A}DP$) <u>r</u> ibose <u>p</u> olymerase-3 : sensor of DNA strand break	NM_001003931	х	Х	Х	Х	Х	х	
PARG	Poly(ADP-ribose) glycohydrolase which rapicly degrades PARP	NM_003631	Х	Х	Х	Х	Tb09.211.3760 (H)	Tc00.1047053507013.24 (H)	
Polk	Translesion synthesis polymerase kappa	NM_016218	YOR346W	SPCC553.07c (H)	LinJ.28.1540 (H)	LmjF.28.1420 (H)	Tb11.01.0040 (H)	Tc00.1047053503755.30 (H)	
ΡοΙη	Translesion synthesis polymerase	NM_181808	х	Х	LinJ.34.1370 (H)	LmjF.34.1260 (H)	Tb927.4.2950 (H)	Tc00.1047053506265.30 (H)	
PolÇ	Translesion synthesis polymerase zeta consisting of REV3 and REV 7 subunits	NM_002912	YPL167C	SPAC688.10 (B)	LinJ.23.1590 (B)	LmjF.23.1330 (B)	Tb927.8.3290 (B)	Tc00.1047053509769.130 (B)	
Rad1(Rad17)	Heterotrimeric 9-1-1 checkpoint complex : subunits of PCNA-like sensor of damaged DNA	NM_002853	YOR368W	SPAC1952.07 (B)	х	Х	Tb927.1.1060 (Y)	х	
Rad18	PCNA monoubiquination in complex with Rad6 at replication fork stalled	NM_020165	YCR066W	SPBC1734.06 (B)	LinJ.17.0340 (Y)	LmjF.17.0290 (Y)	Tb927.7.6370 (Y)	Tc00.1047053504035.130 (Y)	
Rad6A(UBE2A)	PCNA monoubiquination in complex with Rad18 at replication fork	NM_003336	YGL058W	SPAC18B11.07c (B)	LinJ.22.0480 (B)	LmjF.22.0610 (B)	Tb927.8.6090 (Y)	Tc00.1047053506859.10 (B)	
Rad6B(UBE2B)	PCNA monoubiquination in complex with Rad18 at replication fork	NM_003337	YGL058W	SPAC18B11.07c (H)	LinJ.22.0480 (H)	LmjF.22.0610 (H)	х	Tc00.1047053506859.10 (H)	
Rad9 (Ddc1)	Heterotrimeric 9-1-1 checkpoint complex : subunits of PCNA-like sensor of damaged DNA	NM_004584	YDR217C	SPAC664.07c (H) SPBC342.05 (Y)	LinJ.15.1040 (H)	Х	х	Tc00.1047053505843.30 (H)	
Rev1	Translesion synthesis polymerase	NM_016316	YOR346W	SPBC1347.01c (B)	LinJ.36.0110 (B)	LmjF.36.0100 (B)	Tb927.10.4480 (B)	Tc00.1047053510963.10 (B)	
TopBP1(Cut5, Dpb11)	Topoisomerase-binding protein 1: activation of ATR	NM_007027	YJL090C	SPAC23C4.18c (B)	LinJ.29.1910 (H)	LmjF.29.1790 (H)	Ть927.3.4350 (Н)	Тс00.1047053509767.200 (Н)	

(H) represents found from human homolog only(Y) represents found from yeast homolog only

(B) means both found from human and yeast homologs

(X) means no homolog