| 1  | The MYC, TERT, and ZIC1 genes Are Common Targets of Viral                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Integration and Transcriptional Deregulation in Avian Leukosis Virus                                                                                             |
| 3  | Subgroup J-Induced Myeloid Leukosis                                                                                                                              |
| 4  | Yuhao Li, <sup>1, 2</sup> Xuemei Liu, <sup>1, 2</sup> Zhen Yang, <sup>1, 2</sup> Chenggang Xu, <sup>1, 2</sup> Di Liu, <sup>1, 2</sup> Jianru Qin, <sup>1,</sup> |
| 5  | <sup>2</sup> Manman Dai, <sup>1, 2</sup> Jianyong Hao, <sup>1, 2</sup> Min Feng, <sup>1, 2</sup> Xiaorong Huang, <sup>1, 2</sup> Liqiang Tan, <sup>1, 2</sup>    |
| 6  | Weisheng Cao <sup>1, 2#</sup> , and Ming Liao <sup>1, 2#</sup>                                                                                                   |
| 7  | National and Regional Joint Engineering Labaratory for Medicment of Zoonoses                                                                                     |
| 8  | Prevention and Control, <sup>1</sup> and Key Laboratory of Veterinary Vaccine Innovation of the                                                                  |
| 9  | Ministry of Agriculture, <sup>2</sup> College of Veterinary Medicine, South China Agricultural                                                                   |
| 10 | University, Guangzhou 510642, the People's Republic of China.                                                                                                    |
| 11 |                                                                                                                                                                  |

| Supplementary Item      | Title or Caption                                             |  |  |
|-------------------------|--------------------------------------------------------------|--|--|
| Supplementary Figure 1. | Genomic distribution of ALV-J integration sites              |  |  |
|                         | GSEA analyses identified gene classes that were              |  |  |
| Supplementary Figure 2. | significantly up-regulated or down-regulated in ML           |  |  |
|                         | groups.                                                      |  |  |
| Supplementary Table 1.  | Primer sequences.                                            |  |  |
| Supplementary Table 2.  | Next-generation sequencing statistics.                       |  |  |
| Supplementary Table 2   | Characterization of 241 ALV-J integration sites from ML      |  |  |
| Supplementary Table 5.  | samples.                                                     |  |  |
| Supplementary Table 4.  | Validation of the ALV-J integration sites                    |  |  |
| Supplementary Table 5   | GSEA over-represented molecular pathways and functions       |  |  |
| Supplementary Table 5.  | in ML groups with respect to non-tumoral samples             |  |  |
| Supplementary Note 1    | List of genes and their gene classes that were significantly |  |  |
| Supplementary note 1.   | deregulated in different ML groups.                          |  |  |



#### 15 Supplementary Figure 1. Genomic distribution of ALV-J integration sites

ALV-J integration sites were annotated as TSS-proximal when located at  $\pm 2.5$  kb from a transcription start site (TSS) of a known gene (UCSC definition), intragenic when inside a gene at 2.5 kb from the TSS, and intergenic in any other case. Black bars represent exons of a schematic gene, arrowheads indicate the direction of transcription.

# a. Apoptosis tumor versus normal

| NES             | -1.8794032  |
|-----------------|-------------|
| Nominal p-value | 0.012244898 |
| FDR q-value     | 0.03823706  |
| FWER p-Value    | 0.452       |





b.

ECM-recepter interaction tumor versus normal

| NES             | -2.7174306  |
|-----------------|-------------|
| Nominal p-value | 0.0         |
| FDR q-value     | 5.679598E-4 |
| FWER p-Value    | 0.0020      |

Enrichment plot: ECM-RECEPTOR INTERACTION -GALLUS GALLUS (CHICKEN)





C.

#### **Focal adhesion** tumor versus normal

| NES             | -2.7084944   |
|-----------------|--------------|
| Nominal p-value | 0.0          |
| FDR q-value     | 4.5436784E-4 |
| FWER p-Value    | 0.0020       |







### d.

## JAK-STAT signaling pathway tumor versus normal

| NES             | 1.7702438   |
|-----------------|-------------|
| Nominal p-value | 0.024952015 |
| FDR q-value     | 0.28014386  |
| FWER p-Value    | 0.663       |







#### 32 Supplementary Figure 1. GSEA analyses identified gene classes that were

#### 33 significantly up-regulated or down-regulated in ML groups.

Expression profiles of ML groups were compared with respect to three pooled 34 non-tumoral tissues from the different genetic backgrounds by gene set enrichment 35 analysis (GSEA) (see also Supplementary Table 5). On the left, a table summarizes the 36 37 GSEA statistics (NES: normalized enrichment score; FDR q-value: false discovery rate; FWER p-Value: family-wise error rate; for values <0.01, 0.0 is indicated). The 38 enrichment plot shows the over-representation at the top/bottom of the ranked gene 39 set. The heat map shows all significant differentially-expressed genes of the given 40 gene set between groups (N: normal tissue; T: tumor) (from blue = low expression to 41 red = high expression). Gene symbols are shown on the right. (a-c) Genes that were 42 43 down-regulated for apoptosis, ECM-receptor interaction, and focal adhesion were 44 found in all the ML groups. (d) Genes of the JAK-STAT signaling pathway were significantly up-regulated in ML groups. 45

- 46
- 47

- 48 Supplementary Tables 1-7 are provided as Excel files.
- 49

#### 50 Supplementary Table 1. Primer sequences.

51 Sequences of primers used to perform qRT-PCR for the detection of ALV-J-induced52 MLs gene expression level.

53

#### 54 Supplementary Table 2. Next-generation sequencing statistics

55 Data represent averages of duplicate runs. Reads matches to the ALV-J target were 56 determined by paired-end alignment of all raw sequence data to the ALV-J genome 57 using the Burrows-Wheeler Aligner and Short Oligonucleotide Analysis software 58 package. 'Reads mapped to viral genome' was calculated by comparing the sequenced 59 frequency of ALV-J sequences compared to the total reads. 'Reads mapped to chicken 60 genome' represents the average number of sequenced reads that were fully matched to 61 the chicken genome.

62

## Supplementary Table 3. Characterization of 241 ALV-J integration sites from ML samples

65 Each row represents an independent integration. (a) ALV-J-induced chicken tumor identifier. (b) Sequence identifier from Illumina HiSeq2000 pyrosequencing. (c) 66 Matching identity of the raw sequence reads and the UCSC galGAL4 genomic 67 sequences. (d) Chromosome to which the integration maps. (e) Position of the 68 integration site on the chromosome in nucleotides. (f) Orientation of ALV-J with 69 respect to the direction of transcription of the targeted gene, indicated as forward or 70 71 reverse. (g) Ref Seq gene identifier of the gene closest to ALV-J integration. (h) Ref 72 Seq gene symbol of the gene closest to ALV-J integration. (i) Distribution of ALV-J integration sites in the genome of ML samples. Integrations were annotated for each 73 74 patient as 'TSS-proximal' when they occurred within a distance of  $\pm 2.5$  kb from the TSS of at least one gene, as 'intragenic' when inserted into at least one gene at a 75 distance of 2.5 kb from the TSS, and as 'intergenic' in all other cases (see Figure 3a). 76 77 Integration sites are sorted for Chromosome and Integration Locus.

78

#### 79 Supplementary Table 4. Validation result for the ALV-J integration sites.

Twenty-three integration sites at the six affected genes for PCR analysis. Verification of ALV-J integrations with respect to the sequence of the targeted gene identifier from Illumina HiSeq2000 pyrosequencing, indicated as yes or no.

83

## Supplementary Table 5. GSEA over-represented molecular pathways and functions in ML groups with respect to non-tumoral samples.

Over-represented gene-sets of Cellular Process by GSEA using setting: Real. Dataset: expression levels of ML groups were compared with respect to the expression of pooled non-tumoral samples; Trend: up-regulation (Up) or down-regulation (Down) of genes belonging to a given pathway is indicated; Gene Set: Description of significantly over-represented gene sets belonging to specific Canonical Pathway; Size: size of the given Canonical Pathways gene set. ES: Enrichment Score; NES: 92 Normalized Enrichment Score; NOM p-val: Nominal *P*-value; FDR q-val: False
93 Discovery Rate; FWER p-val: Family Wise Error Rate corrected *P*-value.

94

## Supplementary Note 1. List of genes belonging to gene classes significantly deregulated in different ML groups.

We used GSEA analyses to identify gene classes that were significantly up-regulated
or down-regulated in ML groups. In Figure 5b we showed the heat map
representation of the over-expressed genes of Oxidative Phosphorylation in MLs. The
list of genes showed in the heat-map, from top to bottom is:

| PROBE    | RANK IN GENE LIST | RANK METRIC SCORE | RUNNING ES  | CORE ENRICHMENT |
|----------|-------------------|-------------------|-------------|-----------------|
| ATP6V0E2 | 948               | 2.721667          | -0.07928894 | No              |
| COX7A2   | 1600              | 2.239329          | -0.13043955 | No              |
| TCIRG1   | 1850              | 2.06686           | -0.14350395 | No              |
| ATP6V0A4 | 2579              | 1.671428          | -0.20194969 | No              |
| NDUFA10  | 2827              | 1.52627           | -0.2148246  | No              |
| COX8A    | 2927              | 1.478789          | -0.21367773 | No              |
| ND6      | 3149              | 1.356025          | -0.22408935 | No              |
| ATP6V1G3 | 3548              | 1.155021          | -0.2512703  | No              |
| NDUFA9   | 3881              | 0.992072          | -0.27219826 | No              |
| COX15    | 3884              | 0.991223          | -0.26186144 | No              |
| ND4L     | 4509              | 0.655861          | -0.310454   | No              |
| ATP8     | 4654              | 0.56324           | -0.31357053 | No              |
| ND1      | 4672              | 0.553792          | -0.3046548  | No              |
| ND5      | 4944              | 0.397635          | -0.31980354 | No              |
| ATP6V0D1 | 5153              | 0.268774          | -0.32898352 | No              |
| COX1     | 5300              | 0.17753           | -0.33228952 | No              |
| ND2      | 5365              | 0.132001          | -0.32782668 | No              |
| COX2     | 5376              | 0.125711          | -0.31824777 | No              |
| ATP6     | 5493              | 0.043668          | -0.31871152 | No              |
| ND3      | 5553              | -0.00408          | -0.31377497 | No              |
| NDUFS5   | 5744              | -0.11414          | -0.3212496  | No              |
| ATP6V0A1 | 5767              | -0.1311           | -0.3128076  | No              |
| COX3     | 5865              | -0.20134          | -0.31147125 | No              |
| PPA1     | 5915              | -0.23982          | -0.30558726 | No              |
| СҮТВ     | 5938              | -0.25337          | -0.29714528 | No              |
| ATP6V1H  | 6020              | -0.31378          | -0.29429305 | No              |
| LHPP     | 6242              | -0.46544          | -0.30470467 | No              |
| ND4      | 6290              | -0.50044          | -0.29863122 | No              |
| NDUFV3   | 6441              | -0.6074           | -0.3023162  | No              |
| NDUFB4   | 6486              | -0.64103          | -0.29595852 | No              |
| COX11    | 6503              | -0.65563          | -0.28694806 | No              |
| PPA2     | 6695              | -0.80102          | -0.29451743 | No              |
| COX10    | 7127              | -1.13599          | -0.32482484 | No              |

| ATP6V1B2 | 7308 | -1.29947 | -0.33135206 | No  |
|----------|------|----------|-------------|-----|
| ATP5G3   | 7313 | -1.30206 | -0.32120472 | No  |
| NDUFB2   | 7630 | -1.54408 | -0.34061682 | No  |
| ATP6V0E1 | 7684 | -1.5992  | -0.33511183 | No  |
| COX7A2L  | 8114 | -1.9129  | -0.36522976 | Yes |
| NDUFB8   | 8188 | -1.98429 | -0.3616196  | Yes |
| ATP6V1A  | 8217 | -2.00365 | -0.35374603 | Yes |
| COX5A    | 8308 | -2.07536 | -0.3517465  | Yes |
| NDUFA11  | 8364 | -2.10563 | -0.34643096 | Yes |
| ATP6V1E1 | 8615 | -2.3288  | -0.3595901  | Yes |
| ATP6V0A2 | 8780 | -2.45829 | -0.36460146 | Yes |
| NDUFS3   | 8824 | -2.49051 | -0.35814905 | Yes |
| NDUFA12  | 8865 | -2.53064 | -0.3514124  | Yes |
| COX6A1   | 8868 | -2.53283 | -0.34107557 | Yes |
| NDUFB3   | 8881 | -2.55185 | -0.33168614 | Yes |
| ATP6V0C  | 8883 | -2.55293 | -0.32125458 | Yes |
| NDUFC2   | 8895 | -2.56272 | -0.3117704  | Yes |
| COX7C    | 8897 | -2.56628 | -0.30133885 | Yes |
| ATP5A1   | 8925 | -2.58488 | -0.29337054 | Yes |
| ATP6V1D  | 8948 | -2.60505 | -0.28492856 | Yes |
| ATP5B    | 8976 | -2.62215 | -0.27696028 | Yes |
| NDUFA2   | 8989 | -2.63318 | -0.26757085 | Yes |
| UQCRB    | 9060 | -2.69661 | -0.26367646 | Yes |
| ATP6V1G1 | 9082 | -2.71258 | -0.25513974 | Yes |
| UQCRC1   | 9116 | -2.75001 | -0.2477399  | Yes |
| ATP5J    | 9138 | -2.77487 | -0.23920316 | Yes |
| ATP6V0D2 | 9158 | -2.80334 | -0.23047695 | Yes |
| NDUFS4   | 9167 | -2.80883 | -0.22070856 | Yes |
| ATP5J2   | 9186 | -2.82266 | -0.2118876  | Yes |
| NDUFB6   | 9251 | -2.88011 | -0.20742476 | Yes |
| NDUFS8   | 9280 | -2.90471 | -0.19955121 | Yes |
| ATP6AP1  | 9380 | -3.00189 | -0.19840434 | Yes |
| ATP5I    | 9421 | -3.04073 | -0.19166769 | Yes |
| COX4I1   | 9425 | -3.0424  | -0.1814256  | Yes |
| NDUFAB1  | 9460 | -3.08464 | -0.1741205  | Yes |
| NDUFV1   | 9506 | -3.1366  | -0.16785757 | Yes |
| ATP5F1   | 9510 | -3.14174 | -0.15761548 | Yes |
| ATP5C1   | 9539 | -3.16698 | -0.14974193 | Yes |
| ATP5A1W  | 9619 | -3.25551 | -0.14670023 | Yes |
| ATP6V1C2 | 9623 | -3.25652 | -0.13645813 | Yes |
| NDUFA7   | 9698 | -3.32849 | -0.13294272 | Yes |
| UQCRQ    | 9762 | -3.3862  | -0.12838513 | Yes |
| ATP5H    | 9785 | -3.40937 | -0.11994313 | Yes |
| UQCRH    | 9817 | -3.45424 | -0.11235382 | Yes |

| NDUFA8  | 9822  | -3.46131 | -0.10220647 | Yes |
|---------|-------|----------|-------------|-----|
| NDUFA4  | 9836  | -3.47879 | -0.0929118  | Yes |
| SDHD    | 9847  | -3.49228 | -0.0833329  | Yes |
| NDUFA1  | 9850  | -3.49516 | -0.07299607 | Yes |
| NDUFB1  | 9869  | -3.52262 | -0.0641751  | Yes |
| UQCRC2  | 9883  | -3.54112 | -0.05488043 | Yes |
| NDUFA6  | 9987  | -3.65515 | -0.05411252 | Yes |
| NDUFB5  | 9993  | -3.66592 | -0.04405992 | Yes |
| SDHB    | 10000 | -3.67091 | -0.03410205 | Yes |
| ATP5O   | 10074 | -3.77651 | -0.03049189 | Yes |
| SDHA    | 10119 | -3.8581  | -0.02413421 | Yes |
| COX6C   | 10179 | -3.95012 | -0.01919766 | Yes |
| ATP5G1  | 10223 | -4.02997 | -0.01274525 | Yes |
| NDUFA5  | 10263 | -4.0866  | -0.00591386 | Yes |
| NDUFS6  | 10267 | -4.09482 | 0.00432823  | Yes |
| NDUFB9  | 10327 | -4.19777 | 0.009264777 | Yes |
| NDUFB10 | 10419 | -4.36146 | 0.011169587 | Yes |
| NDUFS1  | 10489 | -4.49781 | 0.015158718 | Yes |

In Figure 5c we showed the heat map representation of the most up-regulated (top)
and down-regulated (bottom) genes of the ERBB Signaling Pathway in ML tumors vs.
normal samples. The list of the most up-regulated genes showed in the heat-map from
top to bottom is:

|          |                   |                   | BURNING    |                 |
|----------|-------------------|-------------------|------------|-----------------|
| PROBE    | KANK IN GENE LIST | KANK METRIC SCORE | RUNNING ES | CORE ENRICHMENT |
| MYC      | 0                 | 4.996099          | 0.018182   | Yes             |
| CIP1     | 200               | 3.772469          | 0.017581   | Yes             |
| RAF1     | 258               | 3.657594          | 0.030383   | Yes             |
| BRAF     | 355               | 3.461406          | 0.039504   | Yes             |
| ERBB3    | 420               | 3.36342           | 0.051645   | Yes             |
| TGFA     | 461               | 3.305974          | 0.066052   | Yes             |
| PIK3R5   | 510               | 3.228925          | 0.079703   | Yes             |
| GAB1     | 600               | 3.121755          | 0.089485   | Yes             |
| PAK1     | 821               | 2.865258          | 0.086902   | Yes             |
| PIK3CD   | 1243              | 2.480062          | 0.065348   | Yes             |
| ERBB2    | 1560              | 2.260876          | 0.053705   | Yes             |
| SHC4     | 1749              | 2.131556          | 0.054142   | Yes             |
| MAP2K1   | 1872              | 2.056336          | 0.060809   | Yes             |
| PAK7     | 1899              | 2.037929          | 0.076537   | Yes             |
| NRAS     | 2076              | 1.942731          | 0.078107   | Yes             |
| SHC1     | 2202              | 1.87839           | 0.084491   | Yes             |
| PIK3R2   | 2290              | 1.836239          | 0.094461   | Yes             |
| AKT1     | 2410              | 1.767826          | 0.101411   | Yes             |
| PIK3CB   | 2541              | 1.692321          | 0.107323   | Yes             |
| SOS2     | 2649              | 1.631977          | 0.115406   | Yes             |
| CAMK2D   | 2826              | 1.526355          | 0.116976   | Yes             |
| PAK6     | 2863              | 1.505315          | 0.13176    | Yes             |
| CAMK2B   | 3044              | 1.41424           | 0.132953   | Yes             |
| CAMK2A   | 3286              | 1.288265          | 0.128388   | Yes             |
| GRB2     | 3314              | 1.275653          | 0.144022   | Yes             |
| MAP2K4   | 3434              | 1.216933          | 0.150972   | Yes             |
| PIK3R3   | 3457              | 1.205967          | 0.167077   | Yes             |
| MAPK8    | 3495              | 1.188499          | 0.181767   | Yes             |
| CBLB     | 3712              | 1.07358           | 0.179562   | Yes             |
| HBEGF    | 3742              | 1.056185          | 0.195006   | Yes             |
| HRAS     | 4076              | 0.901284          | 0.181758   | No              |
| PAK2     | 4973              | 0.381219          | 0.115372   | No              |
| NRG1     | 5238              | 0.213532          | 0.108636   | No              |
| CRK      | 5770              | -0.13483          | 0.0767     | No              |
| NRG4     | 5897              | -0.23087          | 0.082989   | No              |
| EIF4EBP1 | 5940              | -0.25432          | 0.097207   | No              |
| PRKCA    | 6045              | -0.33074          | 0.105573   | No              |

| RPS6KB1 | 6183  | -0.4269  | 0.110824 | No |
|---------|-------|----------|----------|----|
| NCK2    | 6295  | -0.50276 | 0.118529 | No |
| SRC     | 6304  | -0.51052 | 0.135956 | No |
| CRKL    | 6860  | -0.92467 | 0.101755 | No |
| MAP2K2  | 7099  | -1.11737 | 0.097473 | No |
| KRAS    | 7224  | -1.22523 | 0.103951 | No |
| AKT3    | 7535  | -1.46593 | 0.092874 | No |
| PIK3CA  | 7903  | -1.7552  | 0.076417 | No |
| STAT5B  | 8005  | -1.82755 | 0.085066 | No |
| GSK3B   | 8545  | -2.27235 | 0.052375 | No |
| ERBB4   | 8643  | -2.34714 | 0.061401 | No |
| втс     | 8667  | -2.37286 | 0.077412 | No |
| MAPK1   | 9008  | -2.65165 | 0.063503 | No |
| MAPK9   | 9361  | -2.97883 | 0.048462 | No |
| EGFR    | 9367  | -2.98745 | 0.066172 | No |
| PIK3R1  | 9558  | -3.1831  | 0.066421 | No |
| PTK2    | 9959  | -3.62362 | 0.046849 | No |
| JUN     | 10629 | -4.91332 | 0.001888 | No |