1 Supplementary Information for

- 2 Biomimetic Magnetite Formation: From Biocombinatorial Approaches to Mineralization Effects
- 3 By Jens Baumgartner, Maria Antonietta Carillo, Kevin Eckes, Peter Werner and Damien Faivre

Table S1 List of oligonucleotides for gene amplification.

Primer	Sequence
mamJ_forward	5'-GACGACGACAAGATGGCAAAAAACCGGCGTGAT-3'
mamJ_His-Tag_reverse	5'-GAGGAGAAGCCCGGTTTATTCTTATCTTCAGCA-3'
mtxA_forward	5'-GACGACGACAAGATGAGCAGAATACTCGCAGT-3'
$mtxA_{\Delta 1-24}$ forward	5'-GACGACGACAAGTCGGAGCCCCCGGTTTCCATGC-3'
mtxA_His-Tag_reverse	5'-GAGGAGAAGCCCGGGTTGCCTTCCAACTGCT-3'

- **Table S2** Summary of magnetite-adhering sequences and sequence alignment with magnetotactic
- 2 bacteria-specific proteins. Sequences marked (*, #) originate from earlier reports by Brown et al. ^{17a} and
- 3 Barbas et al. ^{17b}, respectively. GRAVY is the grand average of hydropathy ²².

selected in this paper			reported in literature		
Sequence	pl	GRAVY	Sequence	pl	GRAVY
AHRHPISFLSTL	9.81	0.158	RFKRVRDR [#]	12.00	-2.300
ATTHRDVQNAFR	9.65	-1.125	RRSRHH [#]	12.30	-3.450
DLKLETALSNST	4.37	-0.350	RRTVKHHN [*]	12.01	-2.413
EHLQFSTHGPLR	7.02	-0.917	RSKKMR [#]	12.02	-2.617
GTPPMSPLVSRV	9.75	0.175	RSKRGR [#]	12.30	-3.100
GTPRSHYPAPQV	8.75	-1.100			
IPLPPPSRPFFK	11.00	-0.275			
ITHPTGFLTSRP	9.76	-0.258			
KPLDIHGNNSYW	6.74	-1.192			
NDNTYANHGIKH	6.92	-1.700			
NLTSLTQGSAML	5.52	0.392			
NMTKHPLAYTEP	6.75	-1.042			
NPFNQHLHAQHP	7.02	-1.533			
QAYRSSAFLPPM	8.75	-0.167			
QFSLPVAKLVNR	11.00	0.233			
SGHQLLLNKMPN	8.49	-0.592			
SILSTMSPHGAT	6.46	0.250			
SPLPSHKSQHTW	8.51	-1.433			
SPTLSNDEHLRM	5.30	-1.050			
TLNKPNRALHFN	11.00	-1.017			
TSASTRPELHYP	6.41	-1.092			
TTHPSTVQTPNW	6.40	-1.142			
VPSLTPSAQSRP	9.72	-0.508			
YHEADPQAYQRT	5.32	-1.917			
YPAPQPLVTKTS	8.59	-0.492			
YSIEQEHPSPFP	4.51	-1.175			
YSPDPRPWSSRY	8.59	-1.933			

Table S3 Sequence alignment of *M. gryphiswaldense* MSR-1 MamJ and phage display selected peptide

3 QFSLPVAKLVNR.

4	MamJ QFSLPVAKLVNR	MAKNRRDRGTDLPGDGDQKISTGPEIVSVTVHPSPNLAAAAKPVQGDIWASLLESSPWSA
5	MamJ QFSLPVAKLVNR	NQGGLVETAQPPSAPIRS Q DPV PVA D LVNR WSQPIWRTAPLAGNAESSEEGVVAPSLTQS QFSL PVA K LVNR
0	MamJ QFSLPVAKLVNR	DSVLAVSDLVIDVQPETDAEVEVSIEPEPALVEPVIEIEAEAAEVEPEPA PVA D LVNR WA QFSL PVA K LVNR
	MamJ QFSLPVAKLVNR	QPIWRTAPLAGNAESSEEGVVAPSLTQSDSVLAVSDLVIDVQPEANAEVEVSIEPEPALV
	MamJ QFSLPVAKLVNR	EPVIEIEAEAAEVEPEPAPVEPAIEIEAIRVELEPVLIDEVVELVTEFEYSQAESVASAD
	MamJ QFSLPVAKLVNR	LIANPAPAESSRLAELLDEAAAIAAPAVAVAVEATRQPNKITASVKKRAPVQEVPVEDLL
	MamJ QFSLPVAKLVNR	GGIFGVAGSAVRGVFTIGGGFVDGVVKGGRLVGSNVVAGTRRLAQTIEVSCGSCSSPKCD
	MamJ QFSLPVAKLVNR	AEDKNK

Table S4 Sequence alignment of *M. gryphiswaldense* MSR-1 MtxA and phage display selected peptide

VPSLTPSAQSRP. Truncated N-terminal signal peptide is marked by italics.

MtxA VPSLTPSAQSRP	MSRILAVALAAGLMMMGWTQAVQASEPPVSMLMQVAGAVETSKGGEKWAPVTRNKFLFVG
MtxA VPSLTPSAQSRP	TQVRTGADGGGKLIDQNSGMAQTIGANSVVEITAAGPKAVSGSLSAPEAASGDLVAGLSN
MtxA VPSLTPSAQSRP	RFAEAQRYTTVRRSVKKEAADLKLRVASDITLSPTYPDLVWENMGAQYGYTLVIDGTSHA
MtxA VPSLTPSAQSRP	VPATSGEMVRFR VPSLTP G A H S FGVTVTEGGQAVGQTEKGGTIVWLSATEDKALVDGVAR VPSLTP S A Q S RP
MtxA VPSLTPSAQSRP	VKAASTGDEFALGNYLDSKGVTVAAMDAYRKHFASHKDDNDMRPLLIKTYNDLKLRDLRQ
MtxA VPSLTPSAQSRP	KEALVYNEQLEGN

- **Table S5** Fitted kinetic data assuming linear relation reaction-limited growth. Data was obtained from
- 2 three independent experiments except for data marked (*) that refer to single experiments. (#) refers to
- 3 only two data points.

Additive	Critical Size D ₀	Kinetic rate k (10 ⁻² nm min ⁻¹)	R ²
none	23.0 ± 1.5	3.4 ± 0.5	0.896
$MtxA_{\Delta 1-24} 0.01 \text{ mg mL}^{-1}$	30.9 ± 0.5	1.3 ± 0.2	0.917
$MtxA_{\Delta 1-24} 0.1 \text{ mg mL}^{-1}$	4.9 ± 1.5(*)	3.7 ± 0.4(*)	0.981
PolyR 0.01 mg mL ⁻¹	12.9 ± 0.8	3.8 ± 0.3	0.975
PolyR 0.1 mg mL ⁻¹	10.5 ± 1.4	2.2 ± 0.1	0.997
MamJ 0.01 mg mL ⁻¹	13.8 ± 2.0	3.6 ± 0.7	0.926
PolyE 0.01 mg mL ⁻¹	15.3 ± 1.3	2.4 ± 0.5	0.926
PolyE 0.1 mg mL ⁻¹	4.3(#)	1.8(#)	1

Т

- **Figure S1** TMHMM output from MtxA sequence. The program predicts an N-terminal transmembrane
- 3 stretch of 24 amino acids with a probability of ~0.5 and a protein location outside the cytosol.

Figure S2 SignalP-NN output for MtxA sequence. C score indicates cleavage probability.

Figure S3 SignalP-HMM output for MtxA sequence. Cleavage site is indicated by red line.

- 2 Figure S4 Large field of view transmission electron micrograph of magnetite particles formed in the
- 3 presence of poly-L-arginine.

2 Figure S5 Large field of view transmission electron micrograph of magnetite particles formed in the

³ presence of poly-L-arginine.

- 2 Figure S6 Medium field of view transmission electron micrograph of magnetite particles formed in the
- 3 presence of poly-L-arginine.