Supplemental Material for 193 nm Ultraviolet Photodissociation Mass Spectrometry for the Structural Elucidation of Lipid A Compounds in Complex Mixtures

John P. O'Brien¹, Brittany D. Needham², Jeremy C. Henderson², Emily M. Nowicki², M. Stephen Trent² and Jennifer S. Brodbelt¹*

> ¹Department of Chemistry The University of Texas at Austin 1 University Station A5300 Austin, TX, USA 78712

²The University of Texas at Austin Department of Molecular Biosciences 2506 Speedway A5000

Figure S-1. MS/MS mass spectra of singly deprotonated wild type *E. coli* lipid A ($M_r = 1797.2$) using (A) CID, (B) HCD and (C) UVPD. Glucosamine fragment ions are labeled as "ring cleavages".

Figure S-2. MS/MS fragmentation maps of singly deprotonated wild type *E. coli* lipid A ($M_r = 1797.2$) using (A) CID (B) HCD and (C) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD.

С

Figure S-3. MS/MS mass spectra of doubly deprotonated *V. cholerae* lipid A ($M_r = 1757.2 \text{ Da}$) using (A) CID, (B) HCD (C) UVPD. Glucosamine fragment ions are labeled as "ring cleavages".

Figure S-4. MS/MS mass spectra of singly deprotonated *V*. *Cholerae* lipid A ($M_r = 1757.2 \text{ Da}$) using (A) CID, (B) HCD (C) UVPD. Glucosamine fragment ions are labeled as "ring cleavages".

Figure S-6. MS/MS mass spectra of singly deprotonated *P. aeruginosa* lipid A ($M_r = 1617.00 \text{ Da}$) using (A) CID, (B) HCD (C) UVPD. Glucosamine fragment ions are labeled as "ring cleavages".

Figure S-7. MS/MS fragmentation maps of doubly deprotonated *V. cholerae* lipid A ($M_r = 1757.2 \text{ Da}$) using (A) CID, (B) HCD, and (C) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD.

Figure S-8. MS/MS fragmentation maps of singly deprotonated *V. Cholerae* lipid A ($M_r = 1757.2 \text{ Da}$) using (A) CID, (B) HCD, and (C) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD.

(11) 1517.74 (12) 1557.98

Figure S-9. MS/MS fragmentation maps of doubly deprotonated *P. aeruginosa* lipid A ($M_r = 1617.00$ Da Da) using (A) CID, (B) HCD, and (C) UVPD-MS. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD.

Figure S-10. MS/MS fragmentation maps of singly deprotonated *P. aeruginosa* lipid A ($M_r = 1617.00$ Da Da) using (A) CID, (B) HCD, and (C) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD.

Figure S-11. Extracted ion chromatograms (EIC) of the major lipid A species observed upon combinatorial modification of BN2 expressed in the presence of the active enzymes LpxF, PagL and PagP. Each EIC is aligned with the corresponding schematic structure.

Figure S-12. Survey ESI mass spectra of the major lipid A species observed upon combinatorial modification of BN2 expressed in the presence of the active enzymes LpxE, PagL and PagP.

Figure S-13 Cleavage site histograms for doubly and singly deprotonated *E. coli* BN2 lipid ($M_r = 1587.0$ Da) using (A) CID, and (B) UVPD. Black bars represent fragment ions from the doubly deprotonated precursor. Blue bars represent fragments from the singly deprotonated precursor. Relative frequencies for all cleavage sites were calculated using equation 1. The numbers representing the cleavage sites are shown in the structure.

Figure S-14. The following compilation of spectra and fragmentation maps were used in the identification of BN2 pFLP lipid A species shown in Figure 5.

MS/MS mass spectra of doubly deprotonated penta-acylated BN2 *E. coli* lipid A ($M_r = 1587.0 \text{ Da}$) using (A) CID or (B) UVPD. Glucosamine fragment ions are labeled as "ring cleavages".

MS/MS mass spectra of singly deprotonated penta-acylated BN2 *E. coli* lipid A ($M_r = 1587.0 \text{ Da}$) using (A) CID and (B) UVPD. Glucosamine fragment ions are labeled as "ring cleavages."

MS/MS fragmentation maps of doubly deprotonated BN2 *E. coli* lipid A ($M_r = 1587.0 \text{ Da}$) using (A) CID and (B) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD. The companion MS/MS spectra are shown in Supplemental Figure 14.

MS/MS fragmentation maps of singly deprotonated BN2 *E. coli* lipid A ($M_r = 1587.0$ Da) using (A) CID and (B) UVPD. Each cleavage site is numbered, and the m/z values of the fragment ions arising from each cleavage site are listed. Those fragment ions that require multiple cleavages are listed next to each cleavage site. Cleavages marked in red font are unique to UVPD. The companion MS/MS spectra are shown in Supplemental Figure 15.

UVPD mass spectra of deprotonated BN2 lipid A modified with (A) LpxF+PagL ($M_r = 1280.9 \text{ Da}$), (B) PagL ($M_r = 1360.8 \text{ Da}$), (C) LpxF ($M_r = 1507.1 \text{ Da}$), (D) LpxF+PagL+PagP ($M_r = 1519.1 \text{ Da}$), (E) LpxF+PagP ($M_r = 1745.3 \text{ Da}$), and (F) PagP ($M_r = 1825.3 \text{ Da}$).

UVPD fragment ion cleavage maps for BN2 Lipid A modified with (A) LpxF+PagL ($M_r = 1280.9 \text{ Da}$), (B) PagL ($M_r = 1360.8 \text{ Da}$), (C) LpxF ($M_r = 1507.1 \text{ Da}$), (D) LpxF+PagL+PagP ($M_r = 1519.1 \text{ Da}$), (E) LpxF+PagP ($M_r = 1745.3 \text{ Da}$), and (F) PagP ($M_r = 1825.3 \text{ Da}$). The UVPD-MS spectra are shown in Supplemental Figure 19.

Cleavage	Theoretical m/z	Experimental m/z	Formula	Error (ppm)	H Migration
	CID Fragm		(PPIII)		
1	1717.253	1717.243	C94H177N2O22P	-5.8	
2	783.498	783.499	C80H148N2O23P2	1.3	
2	1568.003	1567.999	C80H149N2O23P2	-2.6	
3	679.407	679.405	C66H124N2O22P2	-2.9	
4	670.401	670.401	C66H122N2O21P2	0.0	
1+2	1488.037	1488.035	C80H148N2O20P	-1.3	
	HCD Fragn				
1	1717.253	1717.245	C94H177N2O22P	-4.7	
2	783.498	783.497	C ₈₀ H ₁₄₈ N ₂ O ₂₃ P ₂	-1.3	
2	1568.003	1568.003	C ₈₀ H ₁₄₉ N ₂ O ₂₃ P ₂	0.0	
2	227.202	227.202	C14H27O2	0.0	
3	679.407	679.406	C66H124N2O22P2	-1.5	
4	670.402	670.401	C ₆₆ H ₁₂₂ N ₂ O ₂₁ P ₂	-1.5	
1+2	1488.037	1488.043	C80H148N2O20P	4.1	
1+2+5	1243.833	1243.831	C66H120N2O17P	-1.6	
1+2+6	1225.822	1225.820	C66H118N2O16P	-1.6	
1+3+5	1035.650	1035.646	C52H96N2O16P	-3.9	
1+4+5	1017.640	1017.638	C52H94N2O15P	-2.0	
	UVPD Fragment lons				
1	1698.235	1697.218	C94H174N2O21P	-5.4	-H
2	1568.003	1569.000	C ₈₀ H ₁₄₉ N ₂ O ₂₃ P ₂	-6.9	+H
2	783.498	783.494	C ₈₀ H ₁₄₈ N ₂ O ₂₃ P ₂	-5.1	
2	227.202	227.201	C14H27O2	-4.4	
3	1359.821	1357.801	C66H125N2O22P2	-2.9	-2H
4	1341.810	1340.798	C66H123N2O21P2	-3.1	-H
6	1552.008	1550.997	C ₈₀ H ₁₄₉ N ₂ O ₂₂ P ₂	-2.1	-H
7	1765.193	1765.191	C ₉₃ H ₁₇₄ N ₂ O ₂₄ P ₂	-1.1	
8	1640.024	1640.017	C ₈₃ H ₁₅₃ N ₂ O ₂₅ P ₂	-4.3	
9	1612.029	1612.020	C ₈₂ H ₁₅₃ N ₂ O ₂₄ P ₂	-5.6	
10	1596.035	1596.025	C ₈₂ H ₁₅₃ N ₂ O ₂₃ P ₂	-6.3	
11	1387.852	1386.833	C ₆₈ H ₁₂₉ N ₂ O ₂₂ P ₂	-8.1	-H
12	1583.998	1584.999	C ₈₀ H ₁₄₉ N ₂ O ₂₄ P ₂	-4.3	+H
14	738.420	738.420	C35H65NO13P	0.0	
15	710.425	710.422	C34H65NO12P	-4.2	
16	1100.775	1100.771	C ₆₀ H ₁₁₁ NO ₁₄ P	-3.6	
16	692.414	692.412	C34H63NO11P	-2.9	
1+3+5+10+17	817.462	818.420	C40H70N2O13P	-61.0	
1+3+5+10	836.480	836.393	C40H73N2O14P	-104.0	
4+11	932.442	932.437	C40H74N2O18P2	-5.4	
7+11+6	1114.645	1114.605	C53H100N2O18P2	-35.9	
1+2+5	1243.833	1242.818	C66H120N2O17P	-5.8	-H
1+2+6	1225.822	1224.763	C66H118N2O16P	-41.8	-H
1+2	1470.026	1470.003	C80H146N2O19P	-15.6	

Supplemental Table 1. (Table S-1) CID, HCD and UVPD fragment ions of doubly deprotonated *E. coli* lipid A ($M_r = 1797.2$). The spectra are shown in Figure 1 and fragmentation maps are shown in Figure 2.

Supplemental Table 2. (Table S-2) UVPD fragment ions of singly deprotonated BN2 penta-acyl *E. coli* lipid A ($M_r = 1587.0 \text{ Da}$). The spectrum is shown in Supplemental Figure 15B and fragmentation map is shown in Supplemental Figure 16B.

Cleavage	Theoretical m/z	Experimental m/z	Formula	Error (ppm)	H Migration
1	1488.037	1487.027	C ₈₀ H ₁₄₈ N ₂ O ₂ OP	-1.5	-H
3	1359.821	1359.823	C66H125N2O22P2	1.5	
4	1341.81	1341.813	C66H123N2O21P2	2.2	
6	1097.6061	1097.613	C ₅₂ H ₉₅ N ₂ O ₁₈ P ₂	6.3	+H
7	1554.996	1554.995	C79H148N2O23P2	-0.6	
8	1429.826	1429.824	C ₆₉ H ₁₂₇ N ₂ O ₂₄ P ₂	-1.4	
9	1401.831	1401.832	C ₆₈ H ₁₂₇ N ₂ O ₂₃ P ₂	0.7	
10	1385.836	1385.838	C68H127N2O22P2	1.4	
11	1175.638	1175.639	C54H101N2O21P2	0.9	
14	738.417	738.421	C35H65NO13P	5.4	
15	710.425	710.432	C34H65NO12P	9.9	
16	890.576	890.58	C46H85NO13P	4.5	
19	1401.831	1401.832	C ₆₈ H ₁₂₇ N ₂ O ₂₃ P ₂	0.7	
20	1203.633	1203.636	C55H101N2O22P2	2.5	
21	1160.627	1160.625	C54H100NO21P2	-1.7	
5+16	466.221	466.226	C ₂₀ H ₃₇ NO ₉ P	10.7	
3+15	648.388	648.392	C32H59NO10P	6.2	
1+3+5+17	817.462	818.391	C40H70N2O13P	-96.3	+H
4+11	932.442	932.445	C40H74N2O18P2	3.2	
6+7+11	1114.645	1114.610	C53H100N2O18P2	-31.4	
1+3	1260.835	1260.836	C66H121N2O18P	0.8	
1+4	1243.833	1242.827	C66H120N2O17P	1.4	-H
4+7	1310.791	1311.800	C65H120N2O20P2	0.9	+H