## **Supplementary Information**

## Assessment of Quantum Mechanical Methods for Copper Complexes by Photoelectron Spectroscopy

Shuqiang Niu,<sup>1</sup> Dao-Ling Huang,<sup>2</sup> Phuong D. Dau,<sup>2</sup> Hong-Tao Liu,<sup>2</sup> Lai-Sheng Wang,<sup>2</sup> and Toshiko Ichiye<sup>1,3\*</sup>

<sup>1</sup> Department of Chemistry, Georgetown University, Washington, DC 20057
<sup>2</sup> Department of Chemistry, Brown University, Providence, RI 02912
\*Corresponding author. Tel: 202-687-3724; Fax: 202-687-6209; Email: <u>ti9@georgetown.edu</u>

|                           | B3LYP             |                  |                  |                   |                  |                  |  |
|---------------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|--|
| -                         | [1–]              |                  |                  | [0]               |                  |                  |  |
| -                         | r <sub>Cu—N</sub> | r <sub>N—C</sub> | r <sub>C—S</sub> | r <sub>Cu—N</sub> | r <sub>N—C</sub> | r <sub>C—S</sub> |  |
| DZVP2                     | 1.827             | 1.187            | 1.634            | 1.800             | 1.191            | 1.612            |  |
| Def2-SVP                  | 1.828             | 1.183            | 1.628            | 1.803             | 1.187            | 1.608            |  |
| 6-31G**                   | 1.765             | 1.184            | 1.632            | 1.748             | 1.193            | 1.600            |  |
| $6-31(++)_LG^{**}$        | 1.779             | 1.185            | 1.632            | 1.759             | 1.195            | 1.599            |  |
| Def2-SVPD                 | 1.828             | 1.180            | 1.635            | 1.801             | 1.185            | 1.612            |  |
| Def2-TZVPPD               | 1.830             | 1.174            | 1.623            | 1.800             | 1.179            | 1.599            |  |
| aug-cc-pVTZ               | 1.832             | 1.174            | 1.628            | 1.801             | 1.179            | 1.604            |  |
|                           |                   |                  |                  | M06               |                  |                  |  |
| DZVP2                     | 1.816             | 1.185            | 1.626            | 1.792             | 1.190            | 1.603            |  |
| Def2-SVP                  | 1.817             | 1.183            | 1.621            | 1.790             | 1.188            | 1.601            |  |
| 6-31G**                   | 1.759             | 1.183            | 1.626            | 1.744             | 1.193            | 1.593            |  |
| 6-31(++) <sub>L</sub> G** | 1.768             | 1.183            | 1.626            | 1.751             | 1.193            | 1.592            |  |
| ma-SVP                    | 1.816             | 1.180            | 1.629            | 1.789             | 1.186            | 1.604            |  |
| Def2-SVPD                 | 1.818             | 1.180            | 1.628            | 1.790             | 1.186            | 1.605            |  |
| Def2-TZVPPD               | 1.816             | 1.171            | 1.619            | 1.786             | 1.177            | 1.594            |  |
| aug-cc-pVTZ               | 1.818             | 1.171            | 1.623            | 1.788             | 1.177            | 1.599            |  |
| exp. <sup>a</sup>         | 1.808             | 1.137            | 1.639            |                   |                  |                  |  |

**Table S1.** The Optimized and Experimental Bond lengths (r in Å) of  $[Cu(NCS)_2]^{1-}$  and  $[Cu(NCS)_2]^{0}$ .

<sup>a</sup> Ref. 59

|                           | B3LYP             |                  |                   |                   |                  |                   |                  |                   |                   |                  |
|---------------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|------------------|
|                           |                   | [1–]             |                   |                   | [0]              |                   |                  |                   |                   |                  |
|                           | r <sub>Cu—S</sub> | r <sub>s—c</sub> | $\theta_{S-Cu-S}$ | $\theta_{Cu-S-C}$ | $\phi_{C-S-S-C}$ | r <sub>Cu—S</sub> | r <sub>s—c</sub> | $\theta_{S-Cu-S}$ | $\theta_{Cu-S-C}$ | $\phi_{C-S-S-C}$ |
| DZVP2                     | 2.196             | 1.852            | 180.0             | 103.7             | 90.7             | 2.136             | 1.841            | 180.0             | 105.1             | 180.0            |
| Def2-SVP                  | 2.201             | 1.841            | 179.9             | 102.7             | 90.9             | 2.145             | 1.834            | 179.6             | 104.6             | 178.5            |
| 6-31G**                   | 2.119             | 1.848            | 179.6             | 106.5             | 90.3             | 2.087             | 1.844            | 179.7             | 106.3             | 180.0            |
| 6-31(++) <sub>L</sub> G** | 2.121             | 1.854            | 155.9             | 99.2              | _                | 2.085             | 1.844            | 179.5             | 106.2             | 180.0            |
| Def2-SVPD                 | 2.206             | 1.847            | 180.0             | 103.3             | 95.6             | 2.152             | 1.835            | 179.5             | 104.8             | 178.4            |
| Def2-TZVPPD               | 2.195             | 1.841            | 178.9             | 106.2             | 89.7             | 2.136             | 1.829            | 179.9             | 106.5             | 180.0            |
| aug-cc-pVTZ               | 2.195             | 1.845            | 178.8             | 105.2             | 89.8             | 2.136             | 1.834            | 180.0             | 106.5             | 179.6            |
|                           |                   |                  |                   |                   | Μ                | 06                |                  |                   |                   |                  |
| DZVP2                     | 2.174             | 1.840            | 178.9             | 101.2             | 92.9             | 2.116             | 1.829            | 180.0             | 102.4             | 180.0            |
| Def2-SVP                  | 2.180             | 1.829            | 177.9             | 101.1             | 96.2             | 2.126             | 1.824            | 179.9             | 103.7             | 180.0            |
| 6-31G**                   | 2.097             | 1.838            | 178.7             | 102.5             | 88.6             | 2.068             | 1.834            | 172.5             | 99.7              | 179.7            |
| 6-31(++) <sub>L</sub> G** | 2.112             | 1.845            | 152.7             | 85.5              | _                | 2.067             | 1.834            | 169.3             | 99.5              | 180.0            |
| Def2-SVPD                 | 2.187             | 1.834            | 178.8             | 100.9             | 99.5             | 2.132             | 1.823            | 180.0             | 103.4             | 180.0            |
| Def2-TZVPPD               | 2.178             | 1.829            | 178.7             | 102.1             | 81.3             | 2.119             | 1.817            | 179.9             | 104.2             | 180.0            |
| aug-cc-pVTZ               | 2.176             | 1.835            | 179.7             | 102.8             | 84.6             | 2.118             | 1.824            | 180.0             | 104.2             | 180.0            |
| exp. <sup>a</sup>         | 2.140             | 1.847            | 176.7             | 106.1             | 78.7             |                   |                  |                   |                   |                  |
|                           | 2.143             | 1.841            | 179.6             | 107.8             | 120.7            |                   |                  |                   |                   |                  |

**Table S2.** The Optimized and Experimental Bond Lengths (r in Å), Angles ( $\theta$  in °), and Dihedral Angles ( $\phi$  in °) of  $[Cu(SCH_3)_2]^{1-}$  and  $[Cu(SCH_3)_2]^0$ .

<sup>a</sup> Ref. 58

|                                   | $[Cu(NCS)_2]^{1-}$ |         | [Cu(SI | $[Me)_2]^{1-}$ |
|-----------------------------------|--------------------|---------|--------|----------------|
|                                   | ADE                | VDE     | ADE    | VDE            |
| B3LYP/DZVP2                       | 4.331              | 4.357   | 2.627  | 2.986          |
| B3LYP/Def2-SVP                    | 3.893              | 3.915   | 2.198  | 2.556          |
| B3LYP/6-31G**                     | 3.721              | 3.768   | 1.899  | 2.292          |
| B3LYP/6-31(++) <sub>L</sub> G**   | 3.910              | 3.963   | 2.071  | 2.434          |
| B3LYP/Def2-SVPD                   | 4.328              | 4.357   | 2.756  | 3.070          |
| B3LYP/Def2-TZVPPD                 | 4.300              | 4.333   | 2.730  | 3.094          |
| B3LYP/aug-cc-pVTZ                 | 4.310              | 4.341   | 2.729  | 3.089          |
| M06/DZVP2                         | 4.434              | 4.461   | 2.790  | 3.152          |
| M06/Def2-SVP                      | 4.106              | 4.132   | 2.346  | 2.677          |
| M06/6-31G**                       | 3.822              | 3.873   | 2.070  | 2.503          |
| $M06/6-31(++)_LG^{**}$            | 3.963              | 4.018   | 2.345  | 2.826          |
| M06/Def2-SVPD                     | 4.530              | 4.524   | 2.832  | 3.121          |
| M06/Def2-TZVPPD                   | 4.406              | 4.439   | 2.867  | 3.286          |
| M06/aug-cc-pVTZ                   | 4.447              | 4.479   | 2.888  | 3.291          |
| CCSD/Def2-SVPD//M06/Def2-SVP      | 4.939              | 4.931   | 3.128  | 3.437          |
| CCSDDef2-SVPD//M06/DZVP2          | 4.942              | 4.939   | 3.121  | 3.438          |
| CCSD/Def2-TZVPPD//M06/Def2-SVP    | 5.063              | 5.081   | 3.188  | 3.370          |
| CCSD/Def2-TZVPPD//M06/DZVP2       | 5.064              | 5.088   | 3.139  |                |
| CCSD(T)/Def2-SVPD//M06/Def2-SVP   | 4.750              | 4.747   | 3.028  | 3.156          |
| CCSD(T)/Def2-SVPD//M06/DZVP2      | 4.752              | 4.754   | 3.037  | 3.353          |
| CCSD(T)/Def2-TZVPPD//M06/Def2-SVP | 4.855              | 4.890   | 3.073  | 3.255          |
| CCSD(T)/Def2-TZVPPD//M06/DZVP2    | 4.856              | 4.897   | 3.037  |                |
| exp.                              | 4.86(5)            | 4.92(5) | ~3.2   | 3.43(7)        |

**Table S3.** The Calculated and Experimental ADE and VDE  $(eV)^a$  of  $[Cu(SMe)_2]^{1-}$  and  $[Cu(NCS)_2]^{1-}$ .

<sup>a</sup> The calculated ADE and VDE do not take the zero point vibrational energy into account. <sup>b</sup> at 20 K

| TABLE S4. T1 AND T2     |                      |                    |                     |                      |  |  |  |
|-------------------------|----------------------|--------------------|---------------------|----------------------|--|--|--|
|                         | $[Cu(SCH_3)_2]^{1-}$ | $[Cu(NCS)_2]^{1-}$ | $\mathrm{FeCl}_4^-$ | $[Fe(SCH_3)_4]^{1-}$ |  |  |  |
| T1 (reduced)            | 0.021                | 0.023              | 0.028               | 0.032                |  |  |  |
| T1 (vertical oxidized)  | 0.039                | 0.040              | 0.052               | 0.044                |  |  |  |
| T1 (adiabatic oxidized) | 0.028                | 0.037              | 0.053               | 0.048                |  |  |  |
| T2 (reduced)            | 0.044                | 0.067              | 0.108               | 0.146                |  |  |  |
| T2 (vertical oxidized)  | 0.286                | 0.251              | 0.160               | 0.206                |  |  |  |
| T2 (adiabatic oxidized) | 0.164                | 0.228              | 0.185               | 0.210                |  |  |  |
|                         |                      |                    |                     |                      |  |  |  |

**Figure S1.** Calculated VDE from the difference in energy between the reduced form and a Franck-Condon transition (black) and from the HOMO energy (blue) for  $[Cu(NCS)_2]^{1-}$  (triangle),  $[Cu(SCH_3)_2]^{1-}$  (square),  $FeCl_4^-$  (circle), and  $[Fe(SCH_3)_4]^{1-}$  (diamond), using the DZVP2 basis set for RS functionals in order of increasing (short-range) HF exchange. From left to right, the RS functionals (solid symbols) are BNL, CAM-B3LYP, and LRC- $\omega$ PBEh and the highly optimized RS functionals (lighter colored symbols) are  $\omega$ B97,  $\omega$ B97X, and M11. The symbols are connected by dotted lines to guide the eye and the results for the Fe complexes are shifted upwards by 3 eV to avoid overlaps. The experimental PES values (gray line with error indicated approximately by width of line) are also shown.

