
1 Methods

Here we will describe how one can find a domain of “good” initial data and
parameters around a point that is a priori known to be “good”.

1.1 The goal

Consider an autonomous system of differential equations on Rn depending on
initial data u0 ∈ Rn and parameters θ ∈ Rm0

u̇(t, u0, θ) = f(u(t, u0, θ)) (1)

where f is good enough (e.g. f is smooth).
We are interested in varying some components of initial data vector and

some parameters. We will call them variables. Assume that we fixed all non-
variables. Than we consider a solution as a curve α(λ) in Rn that depends only
on a vector λ ∈ Rm of variables.

Let F be a functional mapping a smooth curve in Rn to a nonnegative
number, i.e.

F : C1(R→ Rn)→ [0,+∞).

We think of F as a measure of defectiveness – the bigger it is, the worse situation
we have. We assume that F is continuous and differentiable (in Fréchetsense).

Denote g(x) = F (α(x)).
Let Q be a positive number. We will call a vector λ good if g(λ) ≤ Q.
Assume that we know that λ0 is good. We want to find a box-shaped

neighborhood V of λ0 in Rm that contains mostly good vectors. “Mostly” here
means that we need the ratio between Vol ({v ∈ V | v is good}) and Vol (V) to
be close to 1, i.e. greater than some predefined κ < 1. We call such a box-shaped
neighborhood a good box.

Assume that we also have some a priori bounds

P0 = [a1, b1]× . . .× [am, bm]

for our variables.

1.2 The algorithm

We want to find out how much can we shift the coordinates of p in order to get
a good box. I.e. we want to find the box in the form

P1 = [pi − s−i , pi + s+i]× . . .× [pm − s−i , pm + s+i]

Denote Q0 = g(p).
We calculate the shifts using derivatives of F . Lets assume for a moment that

g(x) is linear in x. Than its derivative governs all the behavior. For example, if
all coordinates of the derivative at p are positive and we decrease one of them,
then the defectiveness also decrease. Since our g is nonlinear in general, this

1

works only in a small neighborhood of p. It is difficult to estimate the actual
size of this neighborhood and we have coefficients shiftCoef , shiftCoefLess
(they should be tuned by hand) to overcome this difficulty.

• (F ′(α(p)))i > 0 in this case

s+i =
Q−Q0

shiftCoef · (g′)i
,

s−i =
pi − ai

shiftCoefLess
;

• otherwise

s+i =
bi − pi

shiftCoefLess
;

s−i =
Q−Q0

shiftCoef · (g′)i
.

If g is linear then all the points from P1 are good. In nonlinear situation
we also can choose shiftCoef and shiftCoefLess big enough to ensure it. But
this can lead to very small s+,−

i whereas we want them to be as big as possible.

1.3 The realization

The algorithm described above is realized using Matlab.
We are using finite difference derivatives in our calculations. Fix an index i

of a variable. We choose a small number hi such that (p)i + hi and (p)i − hi
belong to [ai, bi]. Up to some technical details, we take

hi =
bi − ai

shiftSizeCoef
,

where shiftSizeCoef is a tunable constant.
Denote p+ be p, with i’th coordinate changed to pi +hi, and p− in a similar

way. Consider a finite difference derivative

g′(p) =
g(p+)− g(p−)

2hi
.

The bigger the shiftSizeCoef , the closer the finite difference derivative to
a real one. But in highly nonlinear situation it may be helpful to choose it
to be not too big in order to increase a volume of P1. In this case the finite
difference derivative should be understood as a Lipschitz constant along the
corresponding coordinate of a mapping in a (not very small) neighborhood of
p. Roughly speaking, the less the shiftSizeCoef , the bigger the norm of the
finite difference derivative, the less volume will have P1.

After we calculated P1 we need to check, whether it is good or not. We use
the standard Monte Carlo sampling to do it.

2

1.4 In our case

Let iRNA be the index of the coordinate representing the concentration of RNA
molecules and ipolyp be the index of the coordinate representing the concentra-
tion of polyprotein molecults. For v ∈ Rn denote

T (v) = 5viRNA
+ vipolyp

For simplicity we explain only the case when we have only one type of in-
hibitor.

Assume that we have some data obtained either from real or from numerical
observations. That is for the inhibitor be have a set of possible concentrations
Ci > 0, i = 1 . . . NinhC. And there are inhibiton percentage Pi ≥ 0 and a
Di ≥ 0 deviation corresponding to each inhibitor concentration.

(in fact as an input data we use the power of concentration, so the concen-
tration is equal to 3000 · ki coef · 10power)

Let λ(c) be variables values for the inhibitor concentration c.

g(λ(c)) = g1(λ(c)) + g2(λ(c)).

Here

g1(c) =

NinhC∑
i=1

1

Di

(
100T (α(λ(c))(intTimeIng))

T (α(λ(0)))
− Pi

)2

g2(c) = wVesPen · eVEPS|V0−VOPT| − 1

Here intTimeIng is the integration time. g2 adds penalty for a wrong number
of vesicules – V0 is the number of vesicles for zero concentration case, VOPT
is the “true” number of vesicles and wVesPen, VEPS are tuning constants
controlling the effect of the penalty.

3

