
1 Parameter estimation

1.1 Introduction

DEEP - Differential Evolution Entirely Parallel method is applied to the
biological data fitting problem. The algorithm is an enhancement for the
method developed recently [1, 2]. In order to increase the robustness of the
procedure we implemented a new selection rule for Differential Evolution that
considers several different objective functions in order to accept or reject an
offspring to new generation. To reduce the computational complexity the
population is not to be divided into branches, but instead, several oldest
individuals are substituted with the same number of the best ones after
predefined number of iterations. The individuals are selected on the basis of
the number of generations, in which they survived without any change.

1.2 Formal problem statement

Let the vector v(t, q) = (v0(t, q), ..., vK−1(t, q))
T describe the state of the

system at time t. The dimension of v equals the number of state variables K.
Let the vector q = (q0, ..., qI−1)

T be the vector of parameters with dimension
I.

The system of ordinary differential equations of the first order in respect
to the independent variable t and initial conditions describe the dynamics of
the system:

dv

dt
= f(v, q); v(0, q) = v0; (1.1)

The model parameters are to be estimated by fitting the model output to
the experimental data. This is performed by minimizing the combined ob-
jective function that equals the sum of criteria that measure the deviation of
the model from the desired behavior. We used the sum of squared differences
between the data and model output as the main criterion:

F (v, q) =
J∑

i=1

(v(ti, q)− y(ti))
T (v(ti, q)− y(ti)) +

L∑
l=1

ζlPl(q) (1.2)

= ϕ(v1, ..., vJ) +
L∑

l=1

ζlPl(q)→ min

vi = v(ti, q),
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where J independent experimental observations are denoted y(ti) =
(y0(t), ..., yK−1(t))

T and i = 1, ..., J and Pl, l = 1, ..., L, are the additional
criteria to be satisfied with weight coefficients ζl.

Constraints in the form of inequalities can be imposed for the subset of
parameters:

qlow
i ≤ qi ≤ qup

i i ∈ Il. (1.3)

1.3 Trigonometric transformation of constraints

Lets introduce new parameters ui:

qi = αi + βi sin (ηui), (1.4)

where scaling coefficient η is chosen experimentally, and

αi = (qup
i + qlow

i )/2; βi = (qup
i − qlow

i )/2.

Another transformation can be also used:

qi = αi + βi tanh (ηui), (1.5)

Consequently, parameters qi, i ∈ Il in (1.1) are substituted with there
transformations (1.4) or (1.5) and minimization procedure is applied to de-
termine unconstrained parameters ui.

1.4 Differential Evolution Entirely Parallel method

Differential Evolution (DE) is a stochastic iterative optimization technique
proposed by Storn and Price [5]. DE is an effective method for the minimiza-
tion of various and complex objective functions. Its power is based on the fact
that under appropriate conditions it will attain the global extremum of the
functional; its weakness is in high computational demand and dependence
on control variables, that provides a motivation to parallelize DE. Previous
work in this area has produced a number of methods that perform well in
certain particular problems, but not in general applications.

DE starts from the set of the randomly generated parameter vectors qi,
i = 1, ..., NP . The set is called population, and the vectors are called indi-
viduals. The population on each iteration is referred to as a generation. The
size of population NP is fixed. The name of the method comes from the fact
that the difference between the members of the current population are used
in to generate offsprings (see Fig. 1).

2



q1

2q

x

x
x

x x x

x

xx

x

x

x

x

x

o

qi
qr3

r2

qr1

v

q

Minimum

NP parameter vectors from current generation

Figure 1: Geometric interpretation of Differential Evolution

1.5 Calculation of trial vectors

The first trial vector is calculated by:

v = qr1 + S(qr2 − qr3) (1.6)

where q• is the member of the current generation g, S is a predefined scaling
constant and r1, r2, r3 are different random indices of the members of pop-
ulation. The second trial vector is calculated using ”trigonometric mutation
rule” [6].

z =
qr1 + qr2 + qr3

3
+ (ϕ2 − ϕ1)(qr1 − qr2) (1.7)

+ (ϕ3 − ϕ2)(qr2 − qr3) + (ϕ1 − ϕ3)(qr3 − qr1)
where ϕi = |F (qri)|/ϕ∗, i = 1, 2, 3, ϕ∗ = |F (qr1)| + |F (qr2)| + |F (qr3)|. The
third trial vector is defined as follows:

wj =

{
vj, j = 〈n〉I , 〈n+ 1〉I , ..., 〈n+ L− 1〉I
zj j < 〈n〉I OR j > 〈n+ L− 1〉I

(1.8)

where n is a randomly chosen index, 〈x〉y is the reminder of division x by
y and L is determined by Pr(L = a) = (p)a where p is the probability of
crossover.

The process is illustrated in Fig. 2.
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Figure 2: Construction of the trial vector

1.6 Preserving population diversity

An efficient adaptive scheme for selection of internal parameters S and p
based on the control of the population diversity was proposed in [7]:

varj =
1

NP

NP−1∑
i=0

(
qi,j −

1

NP

NP−1∑
k=0

qk,j

)2

(1.9)

where j = 0, ..., I − 1. Then

Sj =

{√
NP ·(cj−1)+pj(2−pj)

2·NP ·pj
NP · (cj − 1) + pj(2− pj) ≥ 0

Sinf NP · (cj − 1) + pj(2− pj) < 0
(1.10)

and

pj =

{
−(NP · S2

j − 1) +
√

(NP · S2
j − 1)2 −NP · (1− cj) cj ≥ 1

pinf cj < 1
(1.11)

and a new control parameter γ was introduced:

cnew
j = γ

(
varj/var

new
j

)
(1.12)
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1.7 Parallelization
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Figure 3: Differential Evolution processes the population of individuals

Being an evolutionary algorithm, DE can be easily parallelized due to
the fact that each member of the population is evaluated individually. In
the method reported earlier [1, 2, 3] the whole population is to be divided
into branches. The information exchange between branches allowed the best
member of the branch to substitute the oldest member of another branch after
each Π iterations. It turned out that in biological applications the value of
Π was considerably small, making branches an unnecessary complication.

In the latest version the branches are eliminated, and several oldest mem-
bers of the population are substituted by the same number of individuals,
having the best values of objective function. The age of an individual in our
approach is defined by the number of iterations, in which the individual sur-
vived without changes. The number of seeding individuals Ψ and the number
of iterations called seeding interval Θ are the new parameters of the algo-
rithm. The fact that the certain parameter set has not been update during
several iterations indicates that this set corresponds to the local minimum of
the objective function. As we seek the global minimum such parameter set
can be deleted from the population. The set of parameters that corresponds
to the minimal functional value found so far in parallel branch is copied in
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place of the deleted parameter set in target branch.
One of the parameters of the algorithm determines the number of parallel

threads used to calculate the objective function. We utilized the Thread Pool
API from GLIB project [8] and construct the pool with the defined number
of worker threads. The calculation of objective function for each trial vector
is pushed to the asynchronous queue. The calculation starts as soon as there
is an available thread. The thread synchronization condition is determined
by the fact that objective function is to be calculated once for each individual
in the population on each iteration.

1.8 New Selection Rule

Algorithm 1 SELECTION
proc select (individual) =
{
if (F < the value of the parent) then

Accept offspring
else

for all additional criteria P do
if (P < the value of the parent) then

Generate the random number U .
if (U < control parameter for this criterion) then

Accept offspring
end if

end if
end for

end if
}

In order to increase the robustness of the procedure we have implemented
a new selection rule for DE (Algorithm 1). An offspring is to be accepted
to the new generation in accordance with several different criteria. The
offspring replaces its parent if the value of the combined objective function
for the offspring set of parameters is less than that for the parental one. The
additional criteria are checked in the opposite case. The offspring replaces
its parent if the value of some criterion is better, and a randomly selected
value is less than the predefined parameter for this criterion.
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1.9 Stopping criterion
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Figure 4: Stopping criterion. The value of objective function F is plotted
against the number of iterations N

Calculations are stopped in case that the functional F decreases less than
a predefined value ρ during M steps, Fig. 4.

1.10 Implementation

New algorithm was implemented in C programming language as the software
framework with suitable interface that allows a user to express the objective
function using different computer systems widely used in biomedical applica-
tions, such as Octave, R or KNIME. The control parameters of the algorithm
are defined in the datafile that uses an INI-format. The framework is oper-
ated via the simple command line interface. The Enhanced DEEP method
can be embedded in new software. The developed new software is available
on the project site [4].

Runs were performed with different combinations of parameters on the
cluster (1980 Intel Xeons) in the Joint Supercomputer Center of the Russian
Academy of Sciences, Moscow.
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2 Parameter Values

Table 1: Parameter sets: 10 sets of parameter values that optimize
the combined objective function. Mean value and standard devia-
tion are denoted µ and σ respectively. Endpoints of the intervals
for confidence levels 50%, 95% and 99% are given in the last three
rows. Lower and upper limits obtained by bootstraping using 1000
replicas are denoted lo and hi respectively.
# kp kv mp mpolyp kout v kcf mcf
1 2.999986 3.000000 0.823785 0.429819 1.114557 5.000005 1.0005
2 2.999678 2.729485 0.820095 0.427777 1.113277 5.001416 1.0050
3 2.999404 3.000000 0.865871 0.437008 1.129952 5.000008 1.0003
4 2.949448 1.911609 1.000000 0.452166 1.177727 5.000793 1.0005
5 2.998484 2.777688 0.833380 0.431802 1.118594 5.000709 1.0000
6 2.999953 2.999547 1.000000 0.434513 1.155443 5.000000 1.0000
7 2.997663 2.999879 0.850291 0.429821 1.120177 5.000003 1.0000
8 2.926132 3.000000 0.549895 0.425220 1.061066 5.066627 1.0064
9 3.000000 3.000000 0.944671 0.439802 1.148911 5.000001 1.0000
10 2.999995 2.994594 0.851762 0.430848 1.121471 5.000008 1.0012
µ 2.987074 2.841280 0.853975 0.433878 1.126118 5.006957 1.0014
σ 0.026561 0.342427 0.127358 0.007734 0.031094 0.020972 0.0023
50% 0.005665 0.073037 0.027164 0.001650 0.006632 0.004473 0.0005
95% 0.016462 0.212234 0.078936 0.004794 0.019272 0.012998 0.0014
99% 0.021635 0.278923 0.103739 0.006300 0.025327 0.017082 0.0019
lo 2.955551 2.433021 0.704967 0.428236 1.098155 5.000002 1.0000
hi 2.999963 2.999976 0.964388 0.441586 1.156975 5.027226 1.0041

The ensemble of parameter sets is presented in Table 1 and 2.
The scatter plot 5 shows the low variability for the majority of the pa-

rameters.
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Table 2: Parameter sets: 6 sets of parameters related to mutants.
Mean value and standard deviation are denoted µ and σ respec-
tively. Endpoints of the intervals for confidence levels 50%, 95%
and 99% are given in the last three rows. Lower and upper limits
obtained by bootstraping using 1000 replicas are denoted lo and hi
respectively.

# kcm1b kcm2b kcm1v kcm2v kcm3b,v kim1b kim2b kim3b kim1v kim2v kim3v

1 0.800 0.700 0.800 0.700 0.400 30.0 200.0 600.0 15.0 13.0 80.0
2 0.750 0.642 0.861 0.746 0.539 29.3 155.8 782.7 16.4 10.2 121.3
3 0.870 0.726 0.724 0.657 0.405 30.0 197.0 580.1 13.4 10.0 78.8
4 0.731 0.611 0.799 0.615 0.314 27.4 179.8 772.3 13.6 10.5 86.4
5 0.736 0.605 0.814 0.600 0.469 38.3 191.9 470.9 13.8 17.1 121.6
6 0.805 0.800 0.718 0.664 0.312 23.6 212.4 579.9 11.2 19.9 71.4
µ 0.782 0.681 0.786 0.664 0.407 29.8 189.5 631.0 13.9 13.4 93.2
σ 0.053 0.076 0.055 0.054 0.088 4.851 19.63 122.3 1.72 4.17 22.4
50% 0.015 0.021 0.015 0.015 0.024 1.336 5.406 33.67 0.47 1.15 6.2
95% 0.043 0.061 0.044 0.043 0.071 3.882 15.71 97.85 1.38 3.34 17.8
99% 0.056 0.080 0.058 0.057 0.093 5.101 20.65 128.6 1.81 4.39 23.5
lo 0.733 0.607 0.733 0.608 0.313 25.3 167.2 507.3 11.9 10.1 73.9
hi 0.837 0.783 0.835 0.738 0.504 35.6 206.5 774.1 15.9 19.0 121.5

References

[1] Kozlov Konstantin, Samsonov Alexander. DEEP – Differential Evolu-
tion Entirely Parallel Method for Gene Regulatory Networks, PaCT ’09:
Proceedings of the 10th International Conference on Parallel Computing
Technologies. Berlin, Heidelberg: Springer-Verlag, 126–132 (2009)

[2] Kozlov, K. and Samsonov, A., DEEP – Differential Evolution Entirely
Parallel Method for Gene Regulatory Networks. Journal of Supercom-
puting, 57:172–178 (2011)

[3] Konstantin Kozlov, Svetlana Surkova, Ekaterina Myasnikova,
John Reinitz, Maria Samsonova. Modeling of gap gene expression
in Drosophila Kruppel mutants, PLoS Computational Biology,
8(8):e1002635 (2012)

9



[4] Differential Evolution Entirely Parallel method http://urchin.

spbcas.ru/trac/DEEP

[5] Storn R., Price K., Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, Technical
Report TR-95-012, ICSI (1995)

[6] Hui-Yuan Fan and Jouni Lampinen, A Trigonometric Mutation Op-
eration to Differential Evolution, Journal of Global Optimization 27:
105–129 (2003)

[7] Zaharie D., Parameter Adaptation in Differential Evolution by Control-
ling the Population Diversity, in D.Petcu et al. (eds), Proc. of 4th Inter-
nationalWorkshop on Symbolic and Numeric Algorithms for Scientific
Computing, Timisoara, Romania, 385–397 (2002)

[8] GLib http://developer.gnome.org/glib/

10

http://urchin.spbcas.ru/trac/DEEP
http://urchin.spbcas.ru/trac/DEEP
http://developer.gnome.org/glib/


Figure 5: Scatter plot for all parameters
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