Title: Average structure and local configuration of excess oxygen in UO2+x

Authors: Jianwei Wang,^{1, 3,*} Rodney C. Ewing,^{2,3} and Udo Becker³

Affiliations:

¹Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803-0001, USA

²Department of Geological and Environmental Sciences, Stanford University Stanford, California 94305-2115, USA

³Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA

*Jianwei Wang Department of Geology and Geophysics Louisiana State University E235 Howe-Russell Building Baton Rouge, Louisiana 70803, USA Phone: 225-578-5532 Fax: 225-578-2302 Email: Jianwei@lsu.edu

Supplementary information:

Figure S1: The atomic probability contour maps of U^{5+} (green) overlaid on the maps of U^{4+} (blue) and oxygen (red) projected on the (001) plane. U^{6+} atoms are not observed. As shown, at low temperature up to 800 K (a and b), the U^{5+} are localized near but not necessarily nearest neighboring to the interstitial oxygen atoms during the time scale of the simulations. Above 1200 K (c and d), the locations of U^{5+} are distributed over the most (c) or all (d) U lattice sites.

Figure S2: Probability distribution of the angle between <111> and the displacing direction of interstitial oxygen atom from the 4b site, averaged over the trajectory. Small values of angle are those interstitial oxygen atoms displaced in <111> directions and larger values are those in <110> directions. These distributions are used to calculate the ratio between <110> and <111> oxygen interstitials.

