CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum

Xiaobo Ke¹, Laura C. Miller², Wai-Leung Ng³, Bonnie L. Bassler^{1,4}

¹Department of Molecular Biology, Princeton University, NJ, USA

²Department of Chemistry, Princeton University, NJ, USA

³Molecular Biology & Microbiology, Tufts University, MA, USA

⁴Howard Hughes Medical Institute, Chevy Chase, MD, USA.

Correspondence: E-mail <u>bbassler@princeton.edu</u>; Tel. (+1) 609 258 2857; Fax (+1) 609 258 2957.

Contents

Fig. S1. Alignment of vibrio and photobacterial CqsS homologs

Fig. S2. CqsS ligand specificities

Fig. S3. CAI-1 activity depends on a correct cqsA_{Pa} reading frame

Fig. S4. Analysis of CAI-1 moieties produced by the cqsA_{Pa} construct

Fig. S5. cqsA transcript levels from various cqsA_{Pa} constructs

Fig. S6. Disruption of the cqsA_{Pa} 5'UTR stem-loop activates protein production

Fig. S7. *P. angustum* growth and CAI-1 activity on different carbon sources

Fig. S8. *P. angustum qrr*1 represses *luxR* translation

Table S1. Strains and plasmidsSupplemental References

Fig. S1. Alignment of vibrio and photobacterial CqsS homologs. Comparison of the sixth TM helices of CqsS receptors. Cys¹⁷⁰ and Phe¹⁷⁵ are the crucial moieties for ligand detection specificity in CqsS_{Vc} and CqsS_{Vh}, respectively. Ser¹⁶⁸ is located at the corresponding position in CqsS_{Pa}.

Fig. S2. CqsS ligand specificities. Synthetic CAI-1 compounds were added at 5 μ M to a *V. harveyi* reporter strain expressing CqsS_{Vh}, CqsS_{Vc}, CqsS_{Pa} or the designated CqsS mutants. Light production was measured. Error bars represent standard deviations for three replicates.

Fig. S3. CAI-1 activity depends on a correct $cqsA_{Pa}$ reading frame. *E. coli* harboring the designated *P. angustum cqsA* constructs were assayed for CAI-1 activity using the CqsS_{Pa} bioluminescence reporter. Cell-free culture fluids were added at 1% v/v. Error bars represent standard deviations for three replicates.

Fig. S4. Analysis of CAI-1 moieties produced by the $cqsA_{Pa}$ construct. *E. coli* harboring the *P. angustum cqsA* constructs in Fig. 5A were assayed for CAI-1 activity using the CqsS_{Vc} bioluminescent reporter strain. Cell-free culture fluids were added at 5% v/v. Error bars represent standard deviations for three replicates.

Fig S5. *cqsA* transcript levels from various *cqsA*_{Pa} constructs. *E. coli* harboring the *P. angustum cqsA* constructs in Fig. 5A were grown as described for the bioluminescence assay. Cells were harvested at $OD_{600} = 1.0$. Total RNA was extracted using the Qiagen RNeasy Mini Kit, and *cqsA* levels were measured by qRT-PCR. The 5S rRNA transcript was used as the internal control and all *cqsA* levels were normalized to the transcript level of the *cqsA*_{Met01} construct. Error bars represent standard deviations for four replicates.

Fig. S6. Disruption of the $cqsA_{Pa}$ **5'UTR stem-loop activates protein production. A)** Western blot analysis of 6x-His tagged CqsA protein detected in *E. coli* strains carrying the specified $cqsA_{Pa}$ constructs. **B)** CqsA protein detected from diluted lysates prepared from the *E. coli* strain carrying the SL^{mut}- $cqsA_{Met01}$ ^{+TC} construct.

Carbon Source

Fig. S7. *P. angustum* growth and CAI-1 activity on different carbon sources. A) *P. angustum* growth on various carbon sources was measured by absorbance (OD_{510}). B) CAI-1 activity in *P. angustum* culture fluids following growth on the carbon sources from panel **A** was assayed using the bioluminescent reporter strain carrying $cqsS_{Pa}$. Media controls (white) and *P. angustum* culture fluids (black) were added at 50% v/v. Error bars represent standard deviations for two replicates.

Fig. S8. *P. angustum qrr*1 represses *luxR* translation. *E. coli* carrying a LuxR-GFP fusion (pYS141) were transformed with constructs carrying pRHA109 (vector), *V. harveyi* (Vh) *qrr*1, or *P. angustum* (Pa) *qrr*1. *luxR* and *qrr*1 expression were induced by 10 μM IPTG and 10 mM L-Rhamnose, respectively. GFP levels were measured using an Envison Multilabel Reader following 16 h incubation at 37°C. GFP levels were normalized to the vector control. Error bars represent standard deviations for three replicates.

Table S1. Strains and plasmids

Plasmid or Strain	Relevant genotype or feature	Reference
Plasmid		
pLAFR2	Broad-host-range cosmid; mob, Tet ^R	(Friedman <i>et al.</i> , 1982)
pJMH282	<i>V. harveyi cq</i> sS on pLAFR2, Tet ^R	(Henke and Bassler, 2004)
pXKE220	<i>V. harveyi cqsS</i> ^{F175C} on pLAFR2, Tet ^R	This study
pXKE165	<i>V. harveyi cqsS</i> ^{F175S} on pLAFR2, Tet ^R	This study
pXKE071	<i>V. cholerae cqsS</i> on pLAFR2, Tet ^R	This study
pXKE167	<i>V. cholerae cqsS</i> ^{C170S} on pLAFR2, Tet ^R	This study
pXKE222	<i>V. cholerae cqsS</i> ^{C170F} on pLAFR2, Tet ^R	This study
pXKE554	<i>P. angustum</i> S14 <i>cq</i> sS on pLAFR2, Tet ^R	This study
pWN1671	<i>P. angustum</i> B70 <i>cq</i> sS on pLAFR2, Tet ^R	This study
pXKE166	<i>P. angustum</i> B70 <i>cqsS</i> ^{S168C} on pLAFR2, Tet ^R	This study
pXKE168	<i>P. angustum</i> B70 <i>cqsS</i> ^{S168F} on pLAFR2, Tet ^R	This study
pEVS143	P15A <i>oriV, lacl</i> ^q , P _{tac} expression cassette, Kan ^R	(Bose <i>et al.</i> , 2008)
pXKE1054	<i>P. angustum cqsA</i> _{Met01} on pEVS143, untagged, Kan ^R	This study
pXKE903	<i>P. angustum cqsA</i> _{Met01} ^{+TC} on pEVS143, untagged, Kan ^R	This study
pXKE909	<i>P. angustum cqsA</i> _{Met01} + ^{TC, S08*} on pEVS143, untagged, Kan ^R	This study
pXKE907	<i>P. angustum cqsA</i> _{Met01} ^{+AA} on pEVS143, untagged, Kan ^R	This study
pXKE1055	<i>P. angustum</i> RBS- <i>cqsA</i> _{Met01} on pEVS143, untagged, Kan ^R	This study
pXKE1325	<i>P. angustum</i> RBS ^{mut} - <i>cqsA</i> _{Met01} on pEVS143, untagged, Kan ^R	This study
pXKE933	<i>P. angustum</i> RBS- <i>cqsA</i> _{Met01} ^{M01T} on pEVS143, untagged, Kan ^R	This study
pXKE919	<i>P. angustum</i> RBS- <i>cqsA</i> _{Met01} ^{M78T} on pEVS143, untagged, Kan ^R	This study
pXKE1360	<i>P. angustum</i> $cqsA_{Met78}$ on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study
pXKE1128	<i>P. angustum cqsA</i> _{Met01} on pEVS143, C-terminal 6xHis- tagged, Kan ^R	This study
pXKE1331	<i>P. angustum</i> cqsA _{Met01} ^{+TC} on pEVS143, C-terminal 6xHis- tagged, Kan ^R	This study

pXKE1459	<i>P. angustum cq</i> s <i>A</i> _{Met01} + ^{TC, M78T} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1334	<i>P. angustum</i> SL- <i>cqsA</i> _{Met01} on pEVS143, C-terminal 6xHis- tagged, Kan ^R	This study		
pXKE1336	<i>P. angustum</i> SL ^{mut} - <i>cq</i> sA _{Met01} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1130	<i>P. angustum</i> RBS- <i>cqsA</i> _{Met01} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1343	<i>P. angustum</i> SL- <i>cqsA</i> _{Met01} ^{+TC} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1345	<i>P. angustum</i> SL ^{mut} - <i>cq</i> s <i>A</i> _{Met01} ^{+TC} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1132	<i>P. angustum cqsA</i> _{Met01} ^{FS+AT} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1366	<i>P. angustum</i> RBS- <i>cqsA</i> _{Met01} ^{A*} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
pXKE1368	<i>P. angustum cqsA</i> _{Met01} + ^{TC, A*} on pEVS143, C-terminal 6xHis-tagged, Kan ^R	This study		
P. angustum				
S14	Wildtype, surface water isolate (1 m, Botany Bay, Sydney Australia)	(Humphrey et al., 1983)		
B70	Wildtype, seawater isolate (7.5 m, latitude 20°30', longitude 157°30')	(Baumann <i>et al.</i> , 1971; Reichelt <i>et al.</i> , 1976)		
V. cholerae				
C6706str	Wild type	(Thelin and Taylor, 1996)		
V. harveyi				
BB120	Wild type	(Bassler <i>et al.</i> , 1997)		
JMH603	ΔcqsA	(Henke and Bassler, 2004)		
WN1397	$\Delta cqsAS::Cm'$, $\Delta luxN$, $\Delta luxPQ$	(Ng <i>et al.</i> , 2011)		
WN1490	ΔcqsAS::Cm ^r , ΔluxN, ΔluxPQ / pLAFR2 (Vector)	(Ng <i>et al.</i> , 2011)		
WN1492	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ / pJMH282 (cqsS_{Vh})$	(Ng <i>et al.</i> , 2011)		
XKE226	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pXKE220 ($cqsS_{Vh}^{F175C}$)	This study		
XKE169	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pXKE165 ($cqsS_{Vh}^{F175S}$)	This study		
XKE083	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pXKE071 ($cqsS_{Vc}$)	This study		
XKE175	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ / pXKE167 (cqsSvcC170S)$	This study		

XKE228	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ / pXKE222$ ($cqsS_{Vc}^{C170F}$)	This study
XKE557	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ / pXKE554 (cqsS_{Pa S14})$	This study
WN1674	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pWN1671 ($cqsS_{Pa B70}$)	This study
pXKE173	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pXKE166 ($cqsS_{Pa B70}^{S168C}$)	This study
pXKE177	$\Delta cqsAS::Cm^{r}$, $\Delta luxN$, $\Delta luxPQ$ / pXKE168 ($cqsS_{Pa B70}^{S168F}$)	This study

Supplemental References

- Bassler, B.L., Greenberg, E. P., and Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium *Vibrio harveyi. J Bacteriol* **179**: 4043–4045.
- Baumann, P., Baumann, L., and Mandel, M. (1971) Taxonomy of marine bacteria: the genus *Beneckea*. *J Bacteriol* **107**: 268–294.
- Bose, J.L., Rosenberg, C.S., and Stabb, E. V (2008) Effects of *luxCDABEG* induction in *Vibrio fischeri*: enhancement of symbiotic colonization and conditional attenuation of growth in culture. *Arch Microbiol* **190**: 169–183.
- Friedman, A.M., Long, S.R., Brown, S.E., Buikema, W.J., and Ausubel, F.M. (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of *Rhizobium* mutants. *Gene* **18**: 289–296.
- Henke, J.M., and Bassler, B.L. (2004) Three parallel quorum-sensing systems regulate gene expression in *Vibrio harveyi. J Bacteriol* **186**: 6902–6914.
- Humphrey, B., Kjelleberg, S., and Marshall, K.C. (1983) Responses of marine bacteria under starvation conditions at a solid-water interface. *Appl Environ Microbiol* **45**: 43–47.
- Ng, W.-L., Perez, L.J., Wei, Y., Kraml, C., Semmelhack, M.F., and Bassler, B.L. (2011) Signal production and detection specificity in *Vibrio* CqsA/CqsS quorum-sensing systems. *Mol Microbiol* **79**: 1407–1417.
- Reichelt, J.L., Baumann, P., and Baumann, L. (1976) Study of genetic relationships among marine species of the genera *Beneckea* and *Photobacterium* by means of *in vitro* DNA/DNA hybridization. *Arch Microbiol* **110**: 101–120.
- Thelin, K.H., and Taylor, R.K. (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by *Vibrio cholerae* O1 El Tor biotype and O139 strains. *Infect Immun* **64**: 2853–2856.