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EXTENDED EXPERIMENTAL PROCEDURES 
 
Transgenic Generation and Strains 
Transgenic worm lines were generated by microinjection into the gonads of young adult 
worms of the appropriate genetic background. The injection mix used for generating 
transgenics contained the following: 1ng/µl of the transgene of interest, 20ng/µl of the 
dominant marker, and 79ng/µl of 1kb DNA ladder (NEB). Transgenic strains were 
maintained by passaging only worms with the dominant marker. The dominant markers 
used in this study were rab3::gfp::unc-54 and the rol-6(su1006) plasmid, both of which 
were previously described (Hundley et al., 2008; Kramer et al., 1990; Mello et al., 1991). 
The transgenes expressing adr-1 were injected with a modified pBluescript SK plasmid 
that contained the genomic adr-1 locus, including the adr-1 promoter (1245nt upstream 
of the start codon) and 3’ UTR (1560 nt downstream of the stop codon) and three copies 
of the FLAG epitope (DYKDHD) immediately after the start codon. Mutations to the 
dsRBDs of adr-1 were generated by PCR and confirmed by Sanger sequencing. 
 
The following strains were utilized in this study: Bristol strain N2, BB19 adr-1(tm668), 
BB20 adr-2(ok735), BB21 adr-1(tm668); adr-2(ok735), BB21 adr-1(tm668) + blmEx1[ 
3XFLAG-adr-1 genomic, rab3::gfp::unc-54], BB21 adr-1(tm668) + blmEx2[3X FLAG-adr-
1 genomic with mutations in dsRBD1 (K223E, K224A, and K227A) and dsRBD2 
(K583E, K584A and K587A), rab3::gfp::unc-54], BB76 xtIs4[rab3::rfp::C35E7.6 (3’ 
UTR), rab3::gfp::unc-54 (3’ UTR), unc-119 genomic rescue], BB76 xtIs4 + blmEx4[rol-
6(su1006)], BB77 adr-1(tm668); xtIs4 + blmEx4, BB77 adr-1(tm668); xtIs4 + blmEx5[3X 
FLAG::adr-1 genomic, rol-6(su1006)].  
 
Detailed description of each step in the Bioinformatics Pipeline 
Mirrors Figure 4A and Table S1 
 
1) ssRNAseq: The adr-1(-);adr-2(-) sample was sequenced on one lane of Illumina's 

HiSeq 2000 yielding 216 million single-end 76nt reads.  Each other sample was 
sequenced on a lane of Illumina GAII yielding between 37 and 42 million reads of the 
same type. 

 
2) Mapping: Sequenced reads were mapped to the C. elegans reference genome (ce10, 

WS220) with the spliced aligner TopHat (version 2.0.6) allowing only uniquely-
mapped reads with up to two mismatches each with command line options -Mx 1 and 
-N 2. 

 
3) Variant calling: sites with RNA-DNA differences were identified by SAMtools mpileup 

(version 0.1.18) tallying up to 1000 alignments per site.  Additional command line 
options used were -D -I and -g.  

 
4) Site filters: Annotated SNPs were obtained from Illumina's iGenomes collection for C. 

elegans (ce10) and unannotated variants were extracted from the adr-1(-);adr-2(-) 



RNA-Seq dataset.  These genomic variants were filtered from the putative sites in all 
other strains reducing the number of false-positive predictions.  

 
5) Read filters:  Each read aligned to one the remaining putative sites was filtered out if: 
 a) it was a suspected PCR duplicate, according to SAMtools rmdup (version 0.1.18) 
 b) it had a junction overhang < 10nt according to its SAMtools CIGAR string 
 c) it had > 1 non-A2G or non-C2T mismatch or any short indel, per its MD tag 
 d) it had a mismatch less than 25nt away from either end of the read  
 (this was changed to 5nt in the relaxed version used for quantification) 
  
6) Identify sites:  Putative RNA editing sites were identified from A2G variants on the 

sense strand and T2C variants on the antisense strand that were covered by more 
than 5 reads which passed the filters in step 5, including the stringent 25nt threshold 
for filter 5d). 

 
7) Quantify sites: The extent of editing at each site and our confidence in that prediction 

were quantified by a novel extension of the classical Bayesian model used for 
genomic variants, which is described in more detail in the next section.   

 
7.5) To increase the accuracy and confidence of our predictions, we used additional 

reads from the relaxed version of filter 5d) that overlap the sites identified in step 6.  
Moreover, we dropped sites that exhibited editing in 100% of the reads (suggesting a 
genomic variant not filtered out by step 4) and those with very low editing (less than 
10%), which would have been hard to distinguish from sequencing errors. 

 
8) The predicted RNA editing sites from each strain were characterized according to 

their position in annotated genic regions (introns, exons, 3'/5' UTRs, etc.) and 
according to their overlap with other strains.  

 
Bayesian quantification model 
Also known as the ``inverse probability model'' in the SNP calling community (Li et al., 
2008) a Bayesian model for identifying DNA polymorphisms from error-prone 
sequencing data has been shown to perform favorably to other discrete and 
discriminative models (Bahn et al., 2012). In general, the power of a Bayesian approach 
is its combination of prior knowledge and observed data into a posterior estimate.  The 
prior knowledge encodes general domain-specific information like biases in the 
sequencing technology, while the observed data contain signals specific to editing sites 
in a particular experiment.  In this exposition, we will use a simple context-independent 
prior for all editing sites, which consist of pseudo-counts of edited and non-edited reads: 
β and α, respectively.  For sequence alignments in particular, the benefit of a Bayesian 
approach is that even low-coverage regions can give reasonable posterior estimates of 
the editing efficiency with low confidence, while high-coverage regions will give very 
accurate posterior estimates with high confidence. 
 



For example, consider two candidate-editing sites: site L has low coverage and site H 
has high coverage. Let the number of reads from edited (g) and unedited (a) transcripts 
containing those sites be: gL = 1, aL= 9 for site L and gH=10, aH=90 for site H.  The 
observed counts suggest that both sites are edited with 10% efficiency, but we are 
inclined to believe that site H really is edited while site L is not and its single edited read 
could have easily been produced by a sequencing error.  While filter-based approaches 
require manual fine-tuning to be able to filter out site L while keeping site H, the 
Bayesian approaches will simply have a lot more confidence that site H is edited.  To 
formalize the notion of confidence, we introduce a latent binary variable γ which 
indicates whether a nucleotide is edited γ=1 or not γ=0.  Given a prior belief in the 
occurrence of RNA editing at a particular site S (which is currently 
site-independent but can be extended to differ depending on the genomic context or 
read position of S), and the likelihood of observing the RNA-seq reads at site S 
conditioned on the hypothesis of editing P(a,g | γS=1) versus no editing P(a,g | γS=0) 
which captures the probability of a sequencing error ε, Bayesian models for DNA-RNA 
differences use the ``inverse probability'' rule to produce a posterior belief on whether 
site S is edited or not:  
 

 
 
Thus, instead of relying on a stringent threshold on the coverage to identify editing sites 
or completely excluding particular genomic loci such as splice junctions, we will 
compare our confidence in the editing hypothesis P(γS=1 | a,g) to that of the no-editing 
hypothesis P(γS=0 | a,g).  A convenient way to measure the difference in these two 
hypotheses as a particular genomic site S is to take their log-ratio, which causes the 
partition function P(a,b) = εa + (1-ε)g  to cancel out from top and bottom:  
 

 
 
This measure depicted by the heatmap in Figure S4 has the desirable property of 
extracting the maximum confidence from the coverage at a given editing site. However, 
LLR alone is not sufficient to accept or reject either hypothesis in the way p-values are 
often used and misused (Simmons et al., 2011). However, it is very useful in ranking 
different sites in order of relative confidence that editing occurs at each.  Given a ranked 
list of potentially edited sites, this approach still requires a cutoff in order to make actual 
predictions subject to validation. However, compared to the multiple thresholds for each 
filter in pipeline-based approaches, it is easier to manually pick or learn this parameter 
from training data.  We tried three confidence cutoffs (0.95, 0.995, and 0.999) and 
chose the 0.995 based on two factors: the number of sites predicted in the adr-1(-) and 
N2 strains (141 and 59, respectively) was sufficiently large, but the number of sites in 
the adr-2(-) strain remained relatively low (only 6). 

2 BIOINFORMATIC METHODS

6) Identify sites: Putative RNA editing sites were identified from A2G variants on the
sense strand and T2C variants on the antisense strand that were covered by more than 5
reads which passed the filters in step 5, including the stringent 25nt threshold for filter 5d).

7) Quantify sites: The extent of editing at each site and our confidence in that prediction
were quantified by a novel extension of the classical Bayesian model used for genomic
variants, which is described in more detail in the next section.

7.5) To increase the accuracy and confidence of our predictions, we used additional reads
from the relaxed version of filter 5d) that overlap the sites identified in step 6. Moreover, we
dropped sites which exhibited editing in 100% of the reads (suggesting a genomic variant
not filtered out by step 4) and those with very low editing (less than 10%), which would
have been hard to distinguish from sequencing errors.

8) The predicted RNA editing sites from each strain were characterized according to
their position in annotated genic regions (introns, exons, 3’/5’ UTRs, etc.) and according
to their overlap with other strains. Finally, XX out of the YY sites predicted in the ADR1-
or CEN2 strains were validated by Sanger sequencing.

3. Details of Bayesian quantification model

Also known as the “inverse probability model” in the SNP calling community [?], a
Bayesian model for identifying DNA polymorphisms from error-prone sequencing data has
been shown to perform favorably to other discrete and discriminative models [?, ?]. In gen-
eral, the power of a Bayesian approach is it’s combination of prior knowledge and observed
data into a posterior estimate. The prior knowledge encodes general domain-specific in-
formation like biases in the sequencing technology, while the observed data contain signals
specific to editing sites in a particular experiment. In this exposition, we will use a simple
context-independent prior for all editing sites, which consist of pseudo-counts of edited and
non-edited reads: � and ↵, respectively. For sequence alignments in particular, the benefit
of a Bayesian approach is that even low-coverage regions can give reasonable posterior es-
timates of the editing e�ciency with low confidence, while high-coverage regions will give
very accurate posterior estimates with high confidence.

For example, consider two candidate editing sites: site L has low coverage and site H
has high coverage. Let the number of reads from edited (g) and unedited (a) transcripts
containing those sites be: gL = 1, aL = 9 for site L and gH = 10, aH = 90 for site H.
The observed counts suggest that both sites are edited with 10% e�ciency, but we are
inclined to believe that site H really is edited while site L is not and its single edited
read could have easily been produced by a sequencing error. While filter-based approaches
require manual fine-tuning to be able to filter out site L while keeping site H, the Bayesian
approaches will simply have a lot more confidence that site H is edited. To formalize the
notion of confidence, we introduce a latent binary variable � which indicates whether a
nucleotide is edited � = 1 or not � = 0. Given a prior belief in the occurrence of RNA
editing P (�S) = ��S+↵(1��S)

↵+� at a particular site S (which is currently site-independent but
can be extended to di↵er depending on the genomic context or read position of S), and
the likelihood of observing the RNA-seq reads at site S conditioned on the hypothesis of
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editing P (a, g|�S = 1) versus no editing P (a, g|�S = 0) which captures the probability of a
sequencing error ✏, Bayesian models for DNA-RNA di↵erences use the “inverse probability”
rule to produce a posterior belief on whether site S is edited or not:

(1) P (�S |a, g) =
P (�S)P (a, g|�S)

P (a, g|�S = 0) + P (a, g|�S = 1)
=

1
✏a + (1� ✏)g

(
↵(1� ✏)g if �S = 0
�✏a if �S = 1

Thus, instead of relying on a stringent threshold on the coverage to identify editing sites
or completely excluding particular genomic loci such as splice junctions, we will compare
our confidence in the editing hypothesis P (�S = 1|a, g) to that of the no-editing hypothesis
P (�S = 0|a, g). A convenient way to measure the di↵erence in these two hypotheses as
a particular genomic site S is to take their log-ratio, which causes the partition function
P (a, b) = ✏a + (1� ✏)g to cancel out from top and bottom:

(2) LLR(a, g) = log
P (�S = 1|a, g)
P (�S = 0|a, g)

= log
↵(1� ✏)g

�✏a

This measure depicted by the heatmap in Figure XXX has the desirable property of
extracting the maximum confidence from the coverage at a given editing site. However,
LLR alone is not su�cient to accept or reject either hypothesis in the way p-values are often
used and misused [?]. However, it is very useful in ranking di↵erent sites in order of relative
confidence that editing occurs at each. Given a ranked list of potentially edited sites, this
approach still requires a cuto↵ in order to make actual predictions subject to validation.
However, compared to the multiple thresholds for each filter in pipeline-based approaches,
it is easier to manually pick or learn this parameter from training data. We tried three
confidence cuto↵s (0.95, 0.995, and 0.999) and chose the 0.995 based on two factors: the
number of sites predicted in the ADR1- and CEN2 strands (141 and 59, respectively) was
su�ciently large, but the number of sites in the ADR2- strand remained relatively low
(only 6).
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RNase Treatment of FLAG-ADR-1 Immunoprecipitations (IPs) 
IPs were performed as previously stated except worms were not subjected to UV-
crosslinking and only light salt washes were employed. For Micrococcal Nuclease 
(MNase) treatment, IPs were washed twice with MNase reaction buffer (50mM Tris-Cl, 
5mM CaCl2, pH 7.9), resuspended in MNase reaction buffer and treated with MNase 
(NEB) at a concentration of 20U/μl for 30 minutes at 37°C. For RNase A/VI treatment, 
IPs were washed twice with RNA Structure Buffer (10mM Tris-Cl 100mM KCl, 10mM 
MgCl2, pH 7.0), resuspended in RNA Structure Buffer and treated with both RNase A (5 
Prime) and RNase V1 (Ambion) at .07U/μl and .001U/μl respectively. Following MNase 
or RNase A/V1 treatment, IPs were washed twice with light salt wash buffer and 
analyzed by SDS-PAGE and western blotting.   
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SUPPLEMENTAL LEGENDS 
Figure S1, Confirmation of Editing Assay Reproducibility and ADR-1 transgene 
viability, Related to Figure 1.  
(A) Accuracy of Sanger Sequencing Editing Assay. Wild-type cDNAs from the lam-2 3’ 
UTR were generated in two independent reverse transcription (RT) reactions. After PCR 
amplification, the cDNAs were subjected to Sanger sequencing and editing was 
quantified using the Bio-Edit program.  
(B) FLAG-ADR-1 rescues neuronal reporter phenotype. Bar heights represent relative 
fluorescent intensity of a red fluorescent protein reporter with the C35E7.6 3’ UTR 
divided by the fluorescent intensity of a green fluorescent protein reporter with an 
unstructured 3’ UTR. For each worm strain, fluorescent intensities were measured for 
25 young adult worms in three biological replicates. The average values for each strain 
were normalized to the wild-type, error bars represent SEM. 
(C) Editing levels at individual nucleotides within the 3’ UTRs were measured for 3 
biological replicates. Error bars represent standard error of the mean (SEM). Significant 
changes (p< 0.05) in editing levels between wild-type and adr-1(-) are marked with a 
single asterisk. Those that are also significant changes (p< 0.05) in editing levels 
between adr-1(-) and FLAG-ADR-1 are marked with an additional asterisk. 
 
Figure S2: Transcriptome-wide identification and quantitation of A-to-I editing in 
C. elegans, Related to Figure 4.  
(A) cDNAs from the 3’ UTRs of the indicated endogenous genes were amplified from 
wild-type and adr-2(-) worms and subjected to Sanger sequencing. In addition, for the 
noncoding regions, genomic DNA was amplified and sequenced. Chromatograms of the 
editing event(s) (bold A) identified from the RNA-Seq data are shown, but editing was 
examined for the entire RT-PCR product (Table S2). 
(B-E) Venn diagrams show the overlaps in quantified sites between key pairs of strains. 
The number of sites in each strain was covered by more than 5 reads are shown and 
the remainder of all 270 editing sites in other strains is depicted in the black rectangles.  
(B) The wild type (CEN2) and FLAG-ADR-1 strains overlap in 88 out of 170 sites.   
(C) The adr-1(-) and wild type (CEN2) strains overlap in 81 out of 185 sites.   
(D) The adr-1(-) and FLAG-ADR-1 strains overlap in 108 out of 225 sites.  
(E) The adr-1(-) and DS12MT strains overlap in 106 out of 202 site total.   
(F-H) Scatter plot of percent editing in one strain vs another for the quantified sites that 
overlap in the two indicated stains. The r2 value describes the least-squares fit of the 
scatter cloud to the y=x line (black diagonal).  
(I) A priori distribution over the editing model’s confidence. For a fixed expression level, 
our confidence in the validity of an editing site is higher (red) for editing near 50% where 
the evidence from variant (G) and non-variant (A) reads is balanced, as compered to 
less confident sites (blue) with editing near 0% or 100%, where read evidence can be 
explained away as a mutation or a sequencing error. For each putative editing site, the 
numbers of variant (G) and non-variant (A) reads that overlap it are tallied and the 
likelihood of the observed totals is multiplied by the prior shown above. The result of this 
multiplication is a posterior distribution over the editing for this site, with maximum 



confidence reached at the most likely editing % for that site. 
(J and K) Immunoblotting analysis of FLAG immunoprecipitations (IPs) from the 
indicated strains. IPs were performed as previously stated except worms were not 
subjected to UV-crosslinking and only light salt washes were employed. After washing, 
a subset of IPs were treated with (J) Micrococcal Nuclease (MNase +) or (K) RNase A 
and RNase VI (RNase A/VI +). All IPs were then subjected to immunoblotting for the 
FLAG epitope and ADR-2. 
 
Table S1: 270 high confidence editing sites identified by the bioinformatics 
pipeline, Related to Figure 4.  
(Sheet 1) All unique editing sites from the pipeline are numbered (editing site #) and 
given an assigned gene based on wormbase annotations (Gene). In addition to site 
number, the editing sites are organized by transcript number (Transcripts #) to 
demonstrate the number of edited RNAs identified. Chromosomal number (CHROM) 
and location (POS) for all editing sites identified from the pipeline. In addition, the strand 
that the assigned genes are located is listed (plus and minus). Last, genes that were 
identified as C. elegans Staufen targets by LeGendre, et.al., JBC, 2013 are identified. 
(Sheets 2-6) Tables candidate-editing sites identified for each of the indicated strains. In 
addition to chromosomal number (CHROM), location (POS) and the strand that the 
assigned genes are located is listed (plus and minus), the single nucleotide change from 
the wormbase genome (REF) and the RNA-Seq data (ALT) is given. Please note that 
both A-G and T-C changes on the plus and minus strands, respectively are indicative of 
A-to-I editing. Last, the number of reads (NUM_READS) for each site and the 
confidence calculated by the pipeline (CONFIDENCE) is listed. 
 
Table S2: List of editing sites identified with Sanger editing assays from edited 
mRNAs identified by the bioinformatics pipeline, Related to Figure 4. Gene-
specific reverse transcription, PCR amplification and Sanger sequencing of the 
indicated genes (Gene) were performed. The chromosomal location of each gene 
(Chromosome) and all A-to-I editing sites (Editing site position) are listed. Editing sites 
predicted by the pipeline are noted. 
 
Table S3: 81 common predicted editing sites between WT and adr-1(-), Related to 
Figure 4. The chromosomal location of the high confidence editing sites that are 
covered by more than 5 reads in both wild-type (WT) and adr-1(-) RNA-Seq datasets. 
For both strains, the percent editing (Editing %) for each site was calculated by the 
number of reads containing an A-I editing event divided by the total number of reads at 
a given site. Two methods were used to determine if editing sites were regulated by 
ADR-1. Sites were determined to be regulated by ADR-1 if editing levels were between 
the two strains were greater than 12% (method 1). In method 2, the cutoff between 
regulated and non-regulated was determined by the read density at that editing site. To 
be regulated by ADR-1 in method 2, the difference in editing levels between the two 
strains needed to be greater than the editing percentage calculated if 1 read were edited 
out of the total reads covering that site for the strain that had the lowest read coverage. 



The last two columns (G and H) list the co-occurrence of each editing site with 
additional sites in both the WT (N2) and FLAG-ADR-1 RNA-seq datasets. 
 
Table S4: Sequences of all primers, Related to Experimental Procedures. Primers 
used in this study for Sanger editing assays and qRT-PCR analysis. 
 




