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ABSTRACT Many biological proteins are observed to fold
into one of a limited number of structural motifs. By consid-
ering the requirements imposed on proteins by their need to
fold rapidly, and the ease with which such requirements can
be fulfilled as a function of the native structure, we can explain
why certain structures are repeatedly observed among pro-
teins with negligible sequence similarity. This work has
implications for the understanding of protein sequence-
structure relationships as well as protein evolution.

Understanding the relationship between protein sequences
and structures has been a major goal of modern molecular
biophysics. One of the most intriguing aspects of this problem
is that the wide range of possible biological sequences (1) fold
into such a small number of native structures (2-4). While
arguments have been presented why certain motifs are more
likely than others (5-7), the extreme degeneracy of the map-
ping of sequence to structure has not been explained.

There are many examples of proteins of similar structure
with completely different functions and similar functions that
are perfornied by different proteins with different tertiary
folds (8). This suggests that the dominant explanation for the
limited number of folds is based on structural rather than
functional grounds. One of the basic requirements of any
protein is that it must find its native structure in a biologically
relevant time scale. Recent work with simple theoretical
models has demonstrated that rapid folding to a consistent
final shape can be achieved as long as this native state is
sufficiently stable relative to the ensemble of random confor-
mations (9-18). There has been some preliminary work indi-
cating that this stabilization may be easier to achieve for some
structures than for others (5-7, 19, 20).

We have been investigating how a protein sequence’s ability
to fold depends upon the interactions between the residues.
We use concepts borrowed from the physics of spin glasses to
model this foldability. According to this picture, there are two
transitions possible for the sequence: (i) to a folded state at
temperature Ty and (if) to a glassy misfolded state at temper-
ature Ty It is the ratio of these two temperatures that
determines whether the protein will be able to fold sufficiently
rapidly (10, 12, 21, 22). By using the random energy model (23),
T;/T, can be expressed as a monotonieally increasing function
of R = A/T, where A is the difference between the energy of
the native structure and the average energy of the ensemble of
random conformations, and I is the width of the distribution
of energy values of the random structures (12, 20-22). The
foldability can be characterized by the value of R.

Recent work has looked at the relationship between RNA
sequence and secondary structure (24). This has been facili-
tated by methods that can quickly find the lowest-energy
structure by analyzing possible base pairings (25, 26). Such an
approach is difficult with protein tertiary structure due to the
number of possible conformations for a protein of even modest
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length. We have addressed this issue by analyzing a lattice
model of proteins confined to a 3 X 3 X 3 cubic lattice, where
each residue is confined to a lattice point and only the
interactions between the nonbonded near neighbors are con-
sidered (20). Such models can represent larger proteins where
each lattice point corresponds to the position of a structural
unit stabilized by local cooperative interactions, such as parts
of a-helices (27). The advantage of this model is that we can
do an exhaustive enumeration of all compact conformations
and, if the native state and the random states are compact, we
can solve for the optimal set of interaction parameters that
maximizes the foldability R (12, 21, 22). We found that some
structures are more optimizable than others and conjectured
that there should be a connection between how much a given
structure could be optimized for folding and how likely that
structure would result from random evolution. This was based
on the idea that for highly optimizable proteins, the interac-
tions could be far from optimal and still result in rapid folding;
structures with lower optimal folding abilities would have to
have close to optimal interactions to fold.

We now develop a simple model to quantify this conjecture,
by using our lattice model to characterize foldability. We find
that even in the absence of any evolutionary pressure, it is still
the most optimizable structures that are likely to result from
evolution. This dependence grows stronger as the evolutionary
pressure increases, resulting in highly optimizable structures
being greatly overrepresented in any set of biological proteins.
In particular, we show that while in our model all conforma-
tions are possible, certain conformations would be so over-
represented that relatively few distinct protein structural mo-
tifs would be observed in any random set of biological proteins.
This can then reconcile the plasticity of protein sequences with
the robustness of observed structures.

MODEL AND METHODS

We consider the space of all possible sequences of amino acids,
or more abstractly, the d-dimensional space of all possible sets
of interactions between residues ({y}) that can characterize
such sequences. Each possible protein sequence corresponds
to some point in this interaction space. There will be certain
regions of this space where the corresponding protein se-
quences would fold into some structure, separated by regions
where the protein would not be sufficiently stable or where
folding would occur too slowly. The volume of the space of
acceptable interactions for folding into some protein struc-
tures will be larger than for others. We make the simple
approximation that the probability of any given structure
resulting from evolution is proportional to the volume of the
interaction space that would result in successful folding into
that structure.

For each of the M possible structures, we consider a separate
foldability function R;({y}) representing the ability of a protein
with interactions {v} to fold into structure i. For our lattice
model, the foldability would be the ratio of A/T’; other models
of protein folding would yield different foldability functions. If
the sequence can fold, it will fold into the structure with the
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maximum foldability for the particular set of interactions {vy};
that is, it will fold into structure i if Ri({y}) > Ri({v}) (Vj #
i). Evolutionary pressures are represented by a constraint on
the foldability necessary for the sequence to fold into a stable
native structure—the protein can fold only if R,({y}) is greater
than some critical value R. R. depends on the length and
overall flexibility of the protein sequences and on the rate of
processes such as aggregation and degradation that compete
with folding. Larger values of R. represents the situation when
it is more difficult to design a foldable protein sequence, and
more of the interaction space would not correspond to any
foldable structure.

We characterize each of the structures by its optimal fold-
ability R?, defined as the foldability of structure i for the
optimal set of interactions for that structure ({7y}{"). The values
of the optimal foldabilities are distributed according to some
random probability distribution P(R®). We are interested in
Q3 (R}), the average volume of the interaction space that
would result in successful folding into structure i (%;) as a
function of R}. This is equal to

R’
Q.’T»i(R;)) = f Q(RI'IR;))P(NR>Ri = 0)dR;, [1]

R.

where Q(RiR}) is the volume of space with foldability R;
around a point with optimal foldability R, and P(Ng>g, = 0)
is the probability that the number of structures with higher
foldability (Ng=g) is equal to zero. This expression assumes
that the region of relevant interaction space is large enough so
that structure i is competing with many other structures, so
correlations in P(Ng>gr, = 0) can be neglected. As structures
with foldability less than R, will not fold, and R; cannot exceed
R?, this integral is from R, to R}.

Q(Ri|R?) dR; is the volume of the d-dimensional hyperspheri-
cal shell with thickness dR;, where the radius of the shell is such
that the foldability in the shell is R, Assuming a simple
Gaussian shape for the foldability optima,

v - {V?IZ)

Rl({y}) = Rz(')exp< 2/\2

(2]

where [{y} — {y}{| is the distance between {v} and {v}? in the
d-dimensional interaction space and A is a constant parameter,

QUR|IRY) dR; =
d d—2

2m’A 1(_R_;’
.
2 o

We assume that the various optima are uncorrelated, so that
Nr=r, can be described by a Poisson distribution: P(Ng>g, = 0)
= ¢ (Ngr=r), where (Ng-g) is the average number of structures
with R > R;. For the simplest approximation, we imagine that
various structures have their optimal interactions randomly
spread throughout the landscape with some density of optima
p. The average number of structures at any point in interaction
space whose foldability is between R and R + dR, and whose
optimal foldability lies between R° and R° + dR° is equal to the
volume of interaction space surrounding the point of interest
where an optima of optimal foldability R° in that region would
result in a foldability equal to R at the point of interest [equal
to £)(R|R°)] times the probability of any optima having max-
imum foldability R° [P(R°)] times the overall density of optima
(p)- Integrating this expression over all values of R and R°
where R' < R < R° yields

2
)} dR; | R <R} .
(3]

0 | R>R®
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£ Ro
(Nr=r) = p j dR® f dR Q(R|R°) P(R®). [4]
R’ R’

The distribution of P(R°) values can take a variety of functional
forms (28). The distribution of optimal foldability values
computed by using spin-glass theory based on lattice models of
proteins follows a roughly Gaussian distribution (20). By using
this functional form, we write:

(R — ,;)2)

1

PR°) = [5]

As mentioned above, we assume that P(F|R°), the condi-
tional probability of folding into a particular structure given its
optimal foldability R° is proportional to the volume of inter-
action space that would result in that particular structure; that
is, P(¥|R°) = KQg(R°), where the normalization constant K
can be computed by noting that the a priori probability of
forming any particular structure is simply the reciprocal of the
total number of structures M. P3(R°), the probability of a
protein folding into some structure with optimal foldability R°,
is just the probability of any structure having optimal foldabil-
ity R° times the conditional probability of folding into that
structure given that optimal foldability, summed over the M
possible structures: ;

P3(R°) = MP(%|R°)P(R®). [6]

We can obtain u(/), the average number of different struc-
tures that are observed / times when we pick v points from the
volume of interaction parameter space that would result in
successful folding (corresponding to v proteins with solved
structures) by computing the probability of observing any
structure with a given R° value / times summed over the M
structures with their corresponding distribution of optimal
foldabilities. Again, assuming Poisson statistics:

M [* _
w(l) = 7 f [VP(F|RO)Je " FIR) P(R®) dR®. 71
)
The total number of different structures observed is:

wi>0)=M f [1 — e FRNP(RO)RC. [8]

0

RESULTS

The various quantities described in the previous section were
obtained numerically by using the parameters from the lattice
model referred to above (20). In this model the variable
parameters ({y}) are the 156 possible interactions between
residues. Since scaling the interactions or adding a constant
does not change the value of R, we set the average value of the
interaction parameters equal to zero and scale the parameters
so that =, y% = 1. The interaction space is then the surface of
a 155-dimensional unit hypersphere (d = 154). The curvature
of the interaction space was neglected. The resulting distribu-
tion of optimized interaction parameters for the 103,346
possible compact structures is shown in Fig. 1. The distribution
of R° values had a mean of R° = 12.44 with standard deviation
A = 0.37. R, was set equal to 5.44 to give a value of T;/T, of
1.67 (12, 20) in agreement with estimates for real proteins (27).
The average width of the optima (A) was estimated to be
approximately 0.67, based on the percentage of structures with
random interaction values that had R values greater than 5.44,

The distribution of R° values for the native protein structures
[P#(R°)] for various values of the critical foldability R, is shown
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Fic. 1. Distribution of optimized interaction parameters (vy) for
the 103,346 compact structures on the 3 X 3 X 3 cubic lattice,
optimized by using spin-glass theory (12, 20-22) and normalized to the
number of interactions in the model. The distribution for all contacts
(solid line) is compared with the distribution of interaction parameters
for the native contacts found in the lowest-energy structure (dashed
line).

in Fig. 2. Even with no evolutionary pressure (R. = 0), highly
optimizable structures are more likely to result from evolution
than poorly optimizable structures are. This effect becomes
more extreme with increasing R, These results are qualita-
tively similar to numerical results shown in Fig. 3: 150,000 sets
of interaction parameters were chosen at random for the lattice
model proteins, and the R° value for the resulting lowest-
energy structure was calculated, by assuming no evolutionary
pressure. This effect increased as the evolutionary pressure
was increased (results not shown).
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FiG. 2. Distribution of R° values for the native state structures
[P#(R°)] expected for various values of R, (solid lines), compared with
the distribution of R° values for all possible structures [P(R°)] (dashed
line). Even with no evolutionary pressure (R. = 0), it is still the most
optimizable structures that are most likely to result with a random set
of interaction parameters. As the evolutionary pressure increases
(increasing R.), the distribution of the native states moves toward the
extreme tail of the P(R°) distribution, resulting in fewer different
structures observed.
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FiG. 3. Probability of the native state structure having a given R°
value [P#(R°)] compared with what would be expected at random
[P(R®)], obtained by choosing 150,000 random sets of interaction
parameters for the lattice model as described (20). As expected,
structures that are more optimizable with larger values of R° are
overrepresented in the set of native structures.

As R, increases, the corresponding shift in Pg(R°) to the tail
of the P(R®) distribution results in fewer different observed
structural motifs and thus more examples of each. Fig. 4 shows
the number of different motifs that would be observed as the
number of solved structures increases, for various values of R..
A R. value of 5.44 would result in 1000 unrelated proteins of
solved structures having a total of 789 different folds. Results
are also shown for a model assuming 2025 possible equally
likely structural motifs, also resulting in 789 different struc-
tures for 1000 solved proteins. Fig. 5 shows how certain motifs
start to be greatly overrepresented, even for moderate R.
values, relative to what would be expected with a smaller
number of equally likely structures.
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FIG. 4. Number of different structural motifs observed [u(! > 0)]
as a function of the number of individual unrelated proteins of known
structure (v), for various values of R. (solid lines). Also shown for
comparison is the predicted number of different structural motifs
observed if each of 2025 structures were equally likely (dashed line),
a model that would mean that the observation of new structural motifs
would become increasingly rare.
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DISCUSSION

In our model, it is the structures that are highly optimizable
that are more likely to arise through random evolution. We
have used parameters obtained from our highly simplified
lattice model to quantify these predictions. In contrast to many
models that emphasize the role of local interactions (29-32),
our model suggests that it is those conformations with many
long-range contacts that would be the most optimizable, and
the local propensities would be a rather small contribution to
the overall stabilization of the native state (33). These con-
clusions have been supported by recent dynamics simulations
(34). It is also interesting to note that many three-dimensional
lattice structures that are highly optimizable, such as Greek key
and jelly-roll motifs, are also rather common among biological
proteins (20).

In contrast to models that explain the limited number of
observed structural motifs by postulating a limited number of
possible motifs (7), in our model, essentially all structures are
possible, given the right set of interactions. It is the uneven
probabilities of finding any particular structure that results in
the observation of relatively few folds. As a result, as more
protein structures are solved, novel motifs will continue to be
observed. This model would also predict that a few folds would
be observed very frequently, while most other folds would be
observed only once in unrelated proteins. This seems to be a
common phenomenon in the data base of known protein
structures, as the work of Orengo et al. (4) indicates.

This work involves numerous simplifications about the na-
ture of protein evolution. The first approximation, that the
volume of interaction space resulting in a foldable protein of
a given structure represents the probability that such a struc-
ture wouldarise through molecular evolution, represents the
long-time limit where evolution has occurred to a sufficient
extent that a rough degree of equilibrium over the interaction
space has been reached. The approximation that the optimal
sets of interactions for different structures are distributed
randomly through the interaction space is supported by the
observation that the pair-correlation function for the optimal
set of interactions for the 103,346 structures on the 3 X 3 X 3
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FIG. 5. Number of structures observed / times [u(/)], for 1000
solved protein structures, for various values of R (solid lines). Shown
for comparison is the distribution when each of 2025 structural motifs
is equally likely (dashed line), resulting in a much larger percentage of
motifs observed multiple times, with little probability of folds observed
a large number of times (! > 6). Such models cannot explain the
existence of “superfolds” as observed by Orengo et al. (4).
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lattice is almost identical to that obtained by selecting points
at random from the corresponding hypersurface. It is inter-
esting to note that there is a small tail to the distribution,
corresponding to similar structures that are closer to each
other in interaction space than would be expected at random.
The role of these correlations may be important in under-
standing the dynamics of molecular evolution, just as the
“funnels” in the free-energy landscape seem to possibly play a
role in the dynamics of folding of individual proteins (35, 36).

We have also neglected the role of other forms of evolu-
tionary pressure, such as the need for the folded protein to
fulfill its biological function. Being able to fold is crucial but is
only one of a long list of requirements a protein must fulfill.
Our assumption is that the requirements of foldability are
uncorrelated with these other requirements—two different
structures are a priori equally likely to be compatible with a
given biological activity, so the predominance of one structure
over another represents how easy it is to find a set of inter-
actions that will fold into that structure. Again, this is likely an
oversimplification but is supported by the observation that
different motifs have been found to fulfill the same function
(8). In addition, other requirements such as biochemical
efficacy could be added to the fitness function used in this
model.

In the highly dimensional interaction space, almost all of the
volume of the interaction space corresponding to foldable
proteins would have R values only slightly greater than R.,
suggesting that proteins would be marginally foldable. In the
spin-glass model, where foldability reflects how well a protein
is able to avoid spin-glassy behavior, this would suggest that
such behavior might be incipient. Proteins have been shown to
exhibit such spin-glass behavior, especially at low temperatures
(37, 38). Wolynes and coworkers (27, 36) in particular have
emphasized the role of the glass transition in understanding
the final stages of protein folding.

Percolation theory has been applied to the understanding of
molecular evolution (39) and can- provide insight into the
dependence of protein evolution on the value of R.. For low
values of R., most of the interaction space would be accessible,
and it would be rather easy for proteins to evolve from one
structure to another. As R. increased, the interaction space
would move toward isolated regions representing foldable
proteins separated by larger regions of interaction space
corresponding to nonfoldable proteins. It is possible that
nature has worked to optimize R. through evolution so that R,
is close to the percolation threshold, where regions of inter-
action space corresponding to different structures are isolated
enough to give a robustness to structural forms, yet not so
isolated that evolution of the structure is impossible.

We thank Jeffrey Koshi and Michael Thompson for helpful com-
ments and Kurt Hillig for computational assistance. Financial support
was provided by the College of Literature, Science, and the Arts and the
Program in Protein Structure and Design at the University of Michigan,
and by National Institutes of Health Grant 1R29 LM05770-01.

1. Davidson, A. R. & Sauer, R. T. (1994) Proc. Natl. Acad. Sci. USA
91, 2146-2150.

2. Levitt, M. & Chothia, C. (1976) Nature (London) 261, 552-557.

3. Chothia, C. (1992) Nature (London) 357, 543-544.

4. Orengo, C. A, Jones, D. T. & Thornton, J. M. (1994) Nature
(London) 372, 631-634.

5. Finkelstein, A. V. & Ptitsyn, O. B. (1987) Prog. Biophys. Mol.
Biol. 50, 171-190.

6. Finkelstein, A. V., Gutin, A. M. & Badretdinov, A.Y. (1993)
FEBS Lert. 325, 23-28.

7. Finkelstein, A. V., Gutin, A. M. & Badretdinov, A. Y. (1995)
Subcell Biochem. 24, 1-26.

8. Branden, C. & Tooze, J. (1991) Introduction to Protein Structure
(Garland, New York).

9. Bryngelson, J. D. & Wolynes, P. G. (1987) Proc. Natl. Acad. Sci.
USA 84, 7524-7528.



10.
11.
12.
13.

14.
15.

16.

17.
18.

19.
20.
21.

22.

23.

Biophysics: Govindarajan and Goldstein

Bryngelson, J. D. & Wolynes, P.G. (1990) Biopolymers 30,
171-188.

Honeycutt, J. D. & Thirumalai, D. (1990) Proc. Natl. Acad. Sci.
USA 87, 3526-3529.

Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. (1992)
Proc. Natl. Acad. Sci. USA 89, 4918-4922.

Fukugita, M., Lancaster, D. & Mitchard, M. G. (1993) Proc. Natl.
Acad. Sci. USA 90, 6365-6368.

Shakhnovich, E. 1. (1994) Phys. Rev. Lett. 72, 3907-3910.

Sali, A., Shakhnovich, E. I. & Karplus, M. J. (1994) J. Mol. Biol.
235, 1614-1636.

Sali, A., Shakhnovich, E.I. & Karplus, M. J. (1994) Nature
(London) 369, 248-251.

Chan, H. S. & Dill, K. A. (1994) J. Chem. Phys. 100, 9238-9257.
Betancourt, M. R. & Onuchic, J. N. (1995) J. Chem. Phys. 103,
773-787.

Yue, K. & Dill, K. A. (1992) Proc. Natl. Acad. Sci. USA 89,
4163-4167.

Govindarajan, S. & Goldstein, R. A. (1995) Biopolymers 36,
43-51.

Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. (1992)
Proc. Natl. Acad. Sci. USA 89, 9029-9033.

Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, Peter G.
(1993) Proceedings of the 26th Annual Hawaii International Con-
ference on System Sciences, eds. Mudge, T. N., Milutinovic, V. &
Hunter, L. (IEEE Computer Soc. Press, Los Alamitos, CA), Vol.
1, pp. 699-707.

Derrida, B. (1980) Phys. Rev. Lett. 45, 79-82.

36.

37.

38.

39.

Proc. Natl. Acad. Sci. USA 93 (1996) 3345

Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L. (1994)
Proc. R. Soc. London B 255, 279-284.

Zuker, M. & Stiegler, P. (1981) Nucleic Acids Res. 9, 133-148.
Zuker, M. & Sankoff, D. (1984) Bull. Math. Biol. 46, 591-621.
Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z. & Socci,
N. D. (1995) Proc. Natl. Acad. Sci. USA 92, 3626-3630.
Gumbel, E.J. (1958) Statistics of Extremes (Columbia Univ.
Press, New York).

Wetlaufer, D. B. (1973) Proc. Natl. Acad. Sci. USA 70, 697-701.
Zwanzig, R., Szabo, A. & Bagchi, B. (1992) Proc. Natl. Acad. Sci.
USA 89, 20-22.

Dill, K. A., Fiebig, K. M. & Chan, H. S. (1993) Proc. Natl. Acad.
Sci. USA 90, 1942-1946.

Srinivasan, R. & Rose, G. D. (1995) Proteins 22, 81-99.
Govindarajan, S. & Goldstein, R. A. (1995) Proteins 22,413-418.
Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. (1995) J. Mol.
Biol. 252, 460-471.

Leopold, P. E., Montal, M. & Onuchic, J. N. (1992) Proc. Natl.
Acad. Sci. USA 89, 8721-8725.

Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G.
(1995) Proteins 21, 167-195.

Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991) Science
254, 1598-1603.

Subramaniam, V., Bergenhem, N. C. H., Gafni, A. & Steel, D. G.
(1995) Biochemistry 34, 1133-1136.

Kauffman, S. A. (1993) The Origins of Order (Oxford Univ. Press,
New York).



