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A. Structure of the computational domain

Figure S1: The scheme of the computational domain.

B. Interactions between the particles

DLVO theory
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Figure S2: Example of the DLVO potential energy curve for two spheres. Values of param-
eters are: Rp = 50 nm, AH = 1.3× 10−20 J, ψ0 = −40mV, κ−1 = 1 nm.

An example of the DLVO potential energy curve is shown in Figure S2. The curve
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exhibits typical shape with shallow secondary minimum and potential barrier due to the

presence of Electrical Double Layer (EDL). It is clearly the height of this barrier (Umax) that

is responsible for the stability of the colloidal system.

To provide a better insight into the model, in Figure S3 we demonstrate, how the height of

the potential barrier Umax changes with the parameters of the EDL. As expected, the height

of the barrier decreases with decreasing absolute value of ψ0 and increases with increasing

κ−1. Both these trends are slightly nonlinear. It is interesting that Umax decreases more

steeply with the surface potential for larger particles. It means that larger particles are

more sensitive to this parameter than smaller ones and this might be important for practical

application.
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Figure S3: Dependence of the height of the potential barrier (Umax) on the surface potential
(ψ0) for different particle radii (Rp) and Debye lengths (κ−1 from 1 to 2 nm) for interaction
of two spheres.

JKR theory

Typical force-distance curve of the JKR theory is shown in Figure S4. When no external

force is applied, the particles will stay at the equilibrium point, where the force is zero. As

a response to the compressive load, the force between particles becomes repulsive (positive).

When teared apart, the particles experience attractive (negative) force until the point, where
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Figure S4: Example of JKR force-distance curve. Values of parameters are: Rp = 50 nm,
γ = 3mNm−1, E = 40MPa, ν = 0.2.

the bond is predicted to break (h ≈ 1 nm). At this point the external force must exceed the

maximum adhesion force (FC) for the bond to be broken.

Tangential interactions

In this section we describe all forces and torques, caused by the interaction of the particle

with other particles, which act in the direction tangential to the surface of the particle. There

are several different types of the tangential interactions of the particles. Since we restrict

ourselves to two spatial dimensions, the twisting of particles is not of a concern, because

it involves rotation of the particles in the directions irrelevant for the spatially 2D model.

Therefore we provide the formulas for the description of the resistance to sliding and rolling

of particles.

The sliding is caused by moving of the surfaces of the touching particles in opposite

direction and both rotation and translation can contribute to it. Having the relative velocity

(vr
ij) defined in the section about the dissipative force, we can proceed to the definition of

the so-called slip velocity (vs
ij):
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vs
ij = vr

ij − (vr
ij · n)n, (1)

where · denotes the dot product of the vectors. Here vs
ij is the projection of vr

ij tangent

to the particle surface at the contact point. Unit vector in the direction of vs
ij is given by:

tsij =
vs
ij

|vs
ij |
.

According to Marshall (2009), the sliding resistance of the particles can be described by

the spring-slider model.1 Unless the sliding force (F s
ij) between particles i and j reaches the

critical value (F s,crit
ij ), the sliding is absorbed by the spring. When |F s

ij| ≥ F s,crit
ij then the

sliding force is limited to the critical value. The critical force F s,crit
ij is obtained from the

normal force (F n
ij) between particles i and j as follows:

F s,crit
ij = µeff|F n

ij + 2FC|, (2)

where µeff is the effective friction coefficient. In the subcritical case, where |F s
ij| < F s,crit

ij , the

sliding force is given by:1

F s
ij = −kT

(∫ t

t0

vs
ij(ξ)dξ

)
· tsij, (3)

where kT is the tangential stiffness coefficient. The time integral on the right-hand side of

Equation 3 describes the tangential elastic displacement from the beginning of the contact at

time t0 to current time t. When the connection between the particles i and j is broken, this

integral becomes zero. According to Mindlin (1949), kT can be computed from the following

expression:2

kT = 8Gsa(t), (4)

where Gs = E/2(1 + νi) is the shear modulus of the particles. The corresponding torque

(Ms
i) on the particle i caused by the sliding resistance is given by:
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Ms
i = Ri

pF
s
ij(n× tsij). (5)

Another type of movement, which has to be taken into account when dealing with rotating

particles, is the particle rolling. According to Marshall (2009), rolling is the dominant type of

the tangential interaction for colloidal particles, due to their small inertia. For the derivation

of rolling resistance we also adopt the spring-slider model as in the case of sliding. We first

define the so-called rolling velocity (vL
ij), which is for particles i and j given by3:3

vL
ij = R(Ωi −Ωj)× n. (6)

The direction of rolling (tLij) is obtained from:

tLij =
vL
ij

|vL
ij|
. (7)

Finally the rolling resistance torque (ML
i ) is postulated as3:

ML
i = −kLτL, (8)

where kL is the rolling coefficient and τL is the rolling displacement obtained from:

τL =

(∫ t

t0

vL
ij(ξ)dξ

)
· tLij, (9)

where t0 and t have the same meaning as in Equation 3. The rolling resistance is caused by

the presence of the van der Waals adhesive forces. The expression for kL derived by Dominik

and Tielens (1995) is the following:4

kL = 4FC

(
a

a0

) 3
2

, (10)

We refer to the cited papers for further explanation and derivation of the used formulas.
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Finally, the model of the rolling resistance is, similarly to the sliding resistance model, created

by the connection of spring and slider. The critical rolling displacement (τL,crit), which limits

the spring, can be computed from:

τL,crit = Rθcrit, (11)

where θcrit the critical rolling angle, which is the parameter of the model. If the value of the

rolling displacement (τL) exceeds τL,crit, then the critical value is used instead.

The tangential forces and torques are added to the resulting force and torque vectors

acting on each particle. The resulting force (Fi) and torque (Mi) acting on particle i (either

for the the particle-particle or particle-wall interactions) are obtained as follows:

Fi = FNn + F sts, (12)

Mi = RpF
s(n× ts) +ML(tL × n), (13)

where FN is the resulting normal force.

C. Supporting Results

We performed simulations of the system without presence of the EDL on the surface of the

particles. Comparison of these results with the prediction from Equation 24 from the main

text is shown in Figure S5

It is also interesting to compare the results of the 2D case with the 3D case. We performed

preliminary simulations in three spatial dimensions for the system with φ = 0.19 subjected

to different shear rates. As can be seen from Figure S6, the 2D and 3D results are in a very

good agreement.
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Figure S5: System without the presence of EDL. The rate constant of doublet formation
(k1,1) as a function of shear rate (G) for different volume fractions of particles (φ) compared
with the prediction from the Smoluchowski equation (Eq. 24 in the main text).
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Figure S6: The rate constant of doublet formation (k1,1) as a function of shear rate (G) for
different volume fractions of particles (φ) compared with the 3D simulation.
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