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Table S1: Data modalities, assaying platforms, and number of variables for each dataset. 
 

TCGA_BRCA1 and TCGA_BRCA2 Datasets 

Modality Assaying platform information Number of variables 

Gene expression AgilentG4502A_07 (TCGA code) 90,797 

DNA methylation 
HumanMethylation27 (TCGA code) or 

HumanMethylation450 (TCGA code) 
27,578 or 485,575 

Protein expression MDA_RPPA_Core (TCGA code) 166 

Somatic mutations IlluminaGA_DNASeq (TCGA code) 12,497 

Clinical (see text and Table S2 for details) 24 

TCGA_OVCA Datasets 

Modality Assaying platform information Number of variables 

Gene expression AgilentG4502A_07 (TCGA code) 90,797 

DNA methylation HumanMethylation27 (TCGA code) 27,578 

Protein expression MDA_RPPA_Core (TCGA code) 166 

miRNA expression H-miRNA_8x15Kv2 (TCGA code) 2,423 

Clinical (see text and Table S2 for details) 23 

MSKCC_PRCA Datasets 

Modality Assaying platform information Number of variables 

Gene expression Affymetrix Human Exon 1.0 ST Array 26,447 

Copy number  
Agilent-014693 Human Genome CGH 

Microarray 244A  
18,202 

miRNA expression 
Agilent-019118 Human miRNA 

Microarray 2.0 G4470B 
368 

Clinical (see text and Table S2 for details) 9 

NEOMARK Datasets 

Modality Assaying platform information Number of variables 

Gene expression Agilent 25,702 

Tumor imaging  MR/CT 34 

Clinical (see text and Table S2 for details) 48 

METABRIC Datasets 

Modality Assaying platform information Number of variables 

Gene expression Illumina HT 12 48,803 

GWAS  Affymetrix SNP 6.0 909,662 

Clinical (see text and Table S2 for details) 16 
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Table S2: Clinical predictors for each dataset. ‘N’ is numeric/continuous and ‘B’ is binary in the “Value” 

column. 

TCGA_BRCA1 and TCGA_BRCA2 Datasets 

Predictor Value Predictor Value 

Age at initial pathologic diagnosis N Her2 immunohistochemistry level result = 0+/1+ B 

Anatomic organ subdivision = Left B Her2 immunohistochemistry level result = 2+ B 

Anatomic organ subdivision = Right B Her2 immunohistochemistry level result = 3+ B 

Anatomic organ subdivision = Not Specified B 
Menopause status = Not Specified or Indeterminate or 
Perimenopausal (grouped because of rare values) 

B 

Ethnicity = Non-Hispanic B Menopause status  = Premenopausal B 

Ethnicity = Hispanic B Menopause status  = Postmenopausal B 

Ethnicity = Not Specified B Prior diagnosis = Yes/No B 

Her2/Neu immunohistochemistry receptor status = Not 
Specified 

B Race = Not Specified  B 

Her2/Neu immunohistochemistry receptor status = Negative B Race = White B 

Her2/Neu immunohistochemistry receptor status = Positive B Race = Black or African American B 

Her2/Neu immunohistochemistry receptor status = 
Indeterminate/Equivocal 

B Race = Asian B 

Her2 immunohistochemistry level result = Not Specified B Gender = Female/Male B 

TCGA_OVCA Datasets 

Predictor Value Predictor Value 

Age at initial pathologic diagnosis N Karnofsky score = 80 B 

Anatomic organ subdivision = Left B Karnofsky score = 100 B 

Anatomic organ subdivision = Right B Pretreatment history  = Not Specified B 

Anatomic organ subdivision = Not Specified B Pretreatment history  = Present B 

Ethnicity = Non-Hispanic B Pretreatment history  = Absent B 

Ethnicity = Hispanic B Race = Not Specified  B 

Ethnicity = Not Specified B Race = White B 

Jewish origin = Missing B Race = Black or African American B 

Jewish origin = Ashkenazi B Race = Asian B 

Jewish origin  = Non-Ashkenazi B Race = American Indian B 

Karnofsky score = Not Specified B 
Gender = Female/Male B 

Karnofsky score = 60 B 

MSKCC_PRCA Datasets 

Predictor Value Predictor Value 

Age at diagnosis N Race = White Hispanic B 

Prostate specific antigen at diagnosis N Race = Asian B 

Race = Black Non-Hispanic B Race = Other B 

Race = White Non-Hispanic B 
Race = Not Specified B 

Race = Black Hispanic B 

 
(Table S2 is continued on the next page)



3 
 

(Table S2 is continued from the next page) 

NEOMARK Datasets 

Predictor Value Predictor Value 

Weight N BMI N 

Weight  = Not Available B BMI = Not Specified B 

Height N Duration of precancerous lesions (months) N 

Height = Not Available B 
Duration of precancerous lesions (months)= Not 
Specified 

B 

Diabetes B Drinking habit = Heavy Drinker B 

Allergies B Drinking habit = Moderate Drinker B 

High cholesterol B Drinking habit = Not Specified B 

Hypertension B Mobile prosthesis = Inferior B 

Familiar history of malignance B Mobile prosthesis = Inferior and superior B 

Smoker B Mobile prosthesis = Not Specified B 

Cigarette quantity per day N Mobile prosthesis = Superior B 

Cigarette quantity per day = Not Specified B Oral hygiene = Adequate B 

Years smoking  N Oral hygiene = Not Adequate B 

Years smoking = Not Specified B Oral hygiene = Not Specified B 

Ex-smoker B Eating habit = Normal B 

When quit smoking (years ago) N Eating habit = Not Normal B 

When quit smoking (years ago) = Not Specified B Eating habit = Not Available B 

Alcohol use B Substance exposition = No B 

Mechanical trauma B Substance exposition = Not Specified B 

Dental cusps B Precancerous lesions = Erythroplankia B 

Galvanic current B Precancerous lesions = Leukoplankia B 

Infection B Precancerous lesions = No Lesions B 

Hb hematic concentration N Precancerous lesions = Not Specified B 

Hb hematic concentration = Not Specified B Precancerous lesions = Oral Submucosus Fibrosis B 

METABRIC Datasets 

Predictor Value Predictor Value 

Age at initial pathologic diagnosis N Site = 3 B 

Menopausal status  = pre B Treatment =  CT  B 

Menopausal status  = post B Treatment =  CT/HT B 

P53 mutation status = mutated B Treatment =  CT/HT/RT B 

P53 mutation status =  wild-type B Treatment =  HT B 

P53 mutation status =  Not Specified B Treatment =  HT/RT B 

Site = 1 B Treatment =  RT B 

Site = 2 B Treatment =  NONE B 
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Table S3: Core methods used in this work. 
 

STANDARD UNI-MODAL METHODS 

Classification algorithm Feature selection algorithm 

 Support vector machines (SVMs) with linear kernel: default 
penalty parameter C 1 

 SVMs with polynomial kernel: penalty parameter C and 
kernel degree q selected by nested cross-validation 1 

 Random forests: default parameters 2 

 Bayesian logistic regression: Gaussian priors, variance 
parameter selected by cross-validation 3,4 

 Kernel ridge regression: radial basis function kernel, ridge and 
gamma parameters selected by cross-validation 5-7 

o Use all available features from single data 
modality; no feature selection is performed 

o Perform feature selection in single data 
modality; use SVM-RFE 8  

MULTI-MODAL UNIFORM (MMU) METHODS 

Each classifier is trained on features from multiple modalities obtained by different feature selection methods. 
Data modalities are treated uniformly. 

Classification algorithm Feature selection algorithm 

 Support vector machines (SVMs) with linear kernel: default 
penalty parameter C 1 

 Support vector machines (SVMs) with polynomial kernel: 
penalty parameter C and kernel degree q selected by nested 
cross-validation 1 

 Random forests: default parameters 2 

 Bayesian logistic regression: Gaussian priors, variance 
parameter selected by cross-validation 3,4 

 Kernel ridge regression: radial basis function kernel, ridge and 
gamma parameters selected by cross-validation 5-7 

o Use all available features from all data 
modalities; no feature selection is 
performed (the datasets corresponding to 
different modalities are simply 
“concatenated”) 

o Perform feature selection independently for 
each data modality, then return the union 
of selected features; use SVM-RFE 8 on the 
dataset from each data modality 

o Perform feature selection in all data 
modalities at once; i.e., use SVM-RFE 8 on 
the dataset obtained by “concatenating” all 
data modalities). 

MULTI-MODAL ENSEMBLE (MME) METHODS 

The following methods ensemble classification models derived from individual data modalities. 

 Ensemble of random forests (average): A random forest is fit independently for each data modality, then an 
ensemble classifier is constructed by averaging the probabilities output by random forests 

 Ensemble of random forests (max): A random forest is fit independently for each data modality, then an ensemble 
classifier is constructed by taking the maximum of the probabilities output by random forests 

 Ensemble of SVMs w/o feature selection: A linear SVM model is fit independently for each data modality without 
feature selection, then an ensemble classifier is constructed by logistic regression using the predictions for each 
modality as input features 

 Ensemble of SVMs with feature selection: A linear SVM model is fit independently for each data modality with 
feature selection by SVM-RFE, then an ensemble classifier is constructed by logistic regression using the 
predictions for each modality as input features 

MULTI-MODAL SPECIFIC (MMS) METHODS 

The following methods are classifiers designed specifically to handle multi-modal data. 

 Sequential minimal optimization (SMO) for multiple kernel learning 9,10: Linear kernel 

 SMO for multiple kernel learning 9,10: Linear normalized kernel 

 SMO for multiple kernel learning 9,10: Polynomial kernel  

 SMO for multiple kernel learning 9,10: Polynomial normalized kernel  

 Least-squares SVMs for high-dimensional multi-modal data 11: Normalized linear kernel, fixed weights, using all 
features 
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Table S4: Parameters and software implementations of core methods. 
 

Method name Parameter Value(s) Software implementation 

GENERAL-PURPOSE CLASSIFICATION ALGORITHMS 
(USED BOTH IN STANDARD UNI-MODAL METHODS AND MULTI-MODAL UNIFORM (MMU) METHODS) 

SVMs with linear kernel C (error penalty) 1 libsvm 
12,13

 
http://www.csie.ntu.edu.tw/~cjlin/libs

vm   
  

SVMs with polynomial 
kernel 

C (error penalty) 
optimized over (0.01, 0.1, 1, 10, 

100) 

q (polynomial degree) optimized over (1, 2, 3) 

Kernel ridge regression 

Ridge 
optimized over (10

-10
, 10

-9
, 

10
-8

, 10
-7

, 10
-6

, 10
-5

, 10
-4

, 
10

-3
,10

-2
,10

-1
,1) 

clop 
7
 

http://clopinet.com/isabelle/Projects/E
TH/Feature_Selection_w_CLOP.html 

γ (kernel width) 
optimized over (0.01, 0.1, 1, 10, 
100) / total number of features 

Bayesian logistic 
regression 

Prior Gaussian 
Bbr 

http://www.bayesianregression.org/  variance parameter 
optimized over (2

-5
, 2

-4
, 2

-3
, 2

-2
,  

2
-1

, 1, 2, 2
2
, 2

3
, 2

4
) 

Random forests 

ntree (number of trees) 500 
R package randomForest 

http://cran.r-
project.org/web/packages/randomFore

st/index.html 

mtry (number of 
features in a tree) 

√total number o   eatures 

nodesize (min. size of 
terminal nodes of a tree) 

1 

GENERAL-PURPOSE FEATURE SELECTION ALGORITHMS  
(USED BOTH IN STANDARD UNI-MODAL METHODS AND MULTI-MODAL UNIFORM (MMU) METHODS) 

No feature selection - - - 

SVM-RFE 

proportion of features 
to discard at each 

iteration in order to 
create nested feature 

subsets 

20% 
internal implementation on top of 

libsvm 

MULTI-MODAL ENSEMBLE (MME) METHODS 

Ensemble of random 
forests (average) 

Random forest 
parameters 

see above for Random forests 

internal implementation on top of R 
package randomForest 

Ensemble function average 

Ensemble of random 
forests (max) 

Random forest 
parameters 

see above for Random forests 

Ensemble function max 

Ensemble of SVMs w/o 
feature selection 

SVM parameters 
see above for SVMs with linear 

kernel 

internal implementation on top of 
libsvm and R function glm 

Ensemble function obtained by logistic regression 

Ensemble of SVMs with 
feature selection 

SVM parameters 
see above for SVMs with linear 

kernel 
Feature selection 

parameters 
see above for SVM-RFE 

MULTI-MODAL SPECIFIC (MMS) METHODS 
SMO for multiple kernel 
learning 

kernel linear 

SKMsmo 
http://www.di.ens.fr/~obozinski/code.

html 

SMO for multiple kernel 
learning 

kernel linear normalized 

SMO for multiple kernel 
learning 

kernel polynomial, degree = 2 

SMO for multiple kernel 
learning 

kernel 
polynomial, degree = 2, 

normalized 

Least-squares SVMs for 
high-dimensional multi-
modal data 

kernel linear normalized HDIDIT 
http://homes.esat.kuleuven.be/~bioius

er/HIDIDIT/ 

weights fixed 

feature selection none 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://clopinet.com/isabelle/Projects/ETH/Feature_Selection_w_CLOP.html
http://clopinet.com/isabelle/Projects/ETH/Feature_Selection_w_CLOP.html
http://www.bayesianregression.org/
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://www.di.ens.fr/~obozinski/code.html
http://www.di.ens.fr/~obozinski/code.html
http://homes.esat.kuleuven.be/~bioiuser/HIDIDIT/
http://homes.esat.kuleuven.be/~bioiuser/HIDIDIT/
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Table S5: Prior use of SVM-RFE feature selection method in various data modalities. 
 

Modality Study references 

Clinical 
14,15

 

Gene Expression 
16-19

 

Protein Expression and Proteomics 
20-23

 

Somatic Mutations 
24

 

DNA Methylation 
25,26

 

miRNA Expression 
27-29

 

Copy Number 
30,31

 

Tumor Imaging 
32-35

 

GWAS 
36-38
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Table S6: Comparison of 16 feature selection methods with SVM-RFE in TCGA_BRCA1 datasets/predictive tasks. The first two tables report 
predictive performance (AUC) averaged over 8 TCGA_BRCA1 datasets/predictive tasks for various feature selection methods. As can be seen, SVM-
RFE yields higher average predictive performance than any of 16 other feature selection methods, both in uni-modal and multi-modal applications. 
 

Mean predictive performance (AUC) obtained by linear SVM for various feature selection methods  
 

  
MRMR-

50 
MRMR-

100 
MRMR-

500 
MRMR-

1000 
SPCA-

50 
SPCA-
100 

SPCA-
500 

SPCA-
1000 

UKW-
50 

UKW-
100 

UKW-
500 

UKW-
1000 

UKW-
Alpha 

UKW-
FDR 

UKW MRMR 
SVM-
RFE 

Uni-Modal Clinical 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.516 0.515 0.493 0.528 0.640 

Uni-Modal Gene Expression 0.617 0.613 0.614 0.624 0.626 0.631 0.609 0.610 0.610 0.606 0.580 0.588 0.591 0.609 0.640 0.644 0.758 

Uni-Modal Protein Expression 0.680 0.687 0.689 0.689 0.619 0.638 0.689 0.689 0.668 0.668 0.689 0.689 0.628 0.644 0.623 0.638 0.789 

Uni-Modal Somatic Mutations 0.555 0.581 0.574 0.572 0.507 0.499 0.523 0.524 0.567 0.562 0.571 0.557 0.580 0.583 0.620 0.628 0.700 

Uni-Modal DNA Methylation 0.622 0.615 0.609 0.605 0.544 0.554 0.573 0.593 0.588 0.585 0.585 0.586 0.585 0.614 0.616 0.619 0.750 

Multi-Modal Uniform
*
 0.617 0.612 0.609 0.617 0.592 0.599 0.609 0.607 0.614 0.607 0.587 0.598 0.598 0.613 0.628 0.629 0.753 

Multi-Modal Uniform
†
 0.624 0.636 0.618 0.623 0.628 0.618 0.612 0.608 0.600 0.600 0.604 0.604 0.598 0.651 0.674 0.664 0.762 

 

Mean predictive performance (AUC) obtained by Bayesian Logistic Regression for various feature selection methods  
 

  
MRMR-

50 
MRMR-

100 
MRMR-

500 
MRMR-

1000 
SPCA-

50 
SPCA-
100 

SPCA-
500 

SPCA-
1000 

UKW-
50 

UKW-
100 

UKW-
500 

UKW-
1000 

UKW-
Alpha 

UKW-
FDR 

UKW MRMR 
SVM-
RFE 

Uni-Modal Clinical 0.519 0.519 0.519 0.519 0.518 0.518 0.505 0.518 0.505 0.518 0.518 0.518 0.546 0.526 0.511 0.540 0.555 

Uni-Modal Gene Expression 0.614 0.611 0.619 0.637 0.629 0.624 0.554 0.632 0.611 0.602 0.591 0.595 0.599 0.610 0.641 0.637 0.728 

Uni-Modal Protein Expression 0.665 0.671 0.669 0.669 0.604 0.620 0.626 0.669 0.659 0.657 0.668 0.694 0.633 0.644 0.635 0.637 0.744 

Uni-Modal Somatic Mutations 0.550 0.577 0.561 0.573 0.501 0.491 0.514 0.525 0.573 0.566 0.570 0.571 0.599 0.583 0.613 0.617 0.683 

Uni-Modal DNA Methylation 0.613 0.619 0.608 0.607 0.542 0.544 0.569 0.583 0.592 0.599 0.605 0.605 0.624 0.613 0.634 0.608 0.719 

Multi-Modal Uniform
*
 0.616 0.616 0.618 0.621 0.633 0.601 0.614 0.613 0.611 0.606 0.594 0.609 0.552 0.613 0.633 0.619 0.731 

Multi-Modal Uniform
†
 0.630 0.637 0.626 0.625 0.614 0.615 0.609 0.604 0.612 0.609 0.616 0.615 0.598 0.646 0.668 0.659 0.759 

 

Description of used feature selection methods 
 

MRMR-N (N=50,100,500,1000) Minimum Redundancy Maximum Relevance Feature Selection (MRMR)
39

 with up to N features selected
#
.  

SPCA-N (N=50,100,500,1000) Sparse Principal Component Analysis (SPCA)
40

 with up to N features selected
#
. 

UKW-N (N=50,100,500,1000) Univariate Kruskal-Wallis (UKW)
41

 with up to N features selected
#
. 

UKW-Alpha UKW with selecting features at 5% alpha level. 

UKW-FDR UKW with selecting features at 5% FDR level. 

UKW UKW with selecting the smallest subset of features that maximizes predictive performance of the classifier. 

MRMR MRMR with selecting the smallest subset of features that maximizes predictive performance of the classifier. 

SVM-RFE SVM-RFE (see Table S4 for details). 
 
*
 Multi-Modal Uniform approach was applied here with feature selection performed in all modalities at once. 

† 
Multi-Modal Uniform approach was applied here with feature selection performed independently on individual modalities. 

#
 If N was larger than the number of features in a particular modality, all features from than modality were selected. 
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Table S7: Additional comparison of uni-modal and multi-modal approaches on datasets/predictive tasks that have gene expression and protein 
expression modalities (TCGA_BRCA1, TCGA_BRCA2, and TCGA_OVCA). The predictive performance (AUC) is averaged over 27 datasets/predictive 
tasks and is provided separately for linear SVM and Bayesian Logistic Regression (BLR) classifiers. As can be seen, using only gene expression and 
protein expression for multi-modal analyses does not improve average predictive performance compared to uni-modal approaches and multi-
modal based on all 5 data modalities. 
 

Approach Details 
Area under ROC curve (AUC) 

Linear SVM BLR 

Uni-Modal Gene Expression  
w/o feature selection  0.599 0.601 

with SVM-RFE feature selection  0.742 0.714 

Uni-Modal Protein Expression  
w/o feature selection 0.604 0.598 

with SVM-RFE feature selection  0.723 0.668 

Multi-Modal Uniform with all 5 data modalities 

w/o feature selection 0.602 0.580 

with features selected by SVM-RFE on all data modalities at once 0.735 0.717 

with features selected by SVM-RFE independently on each data modality 0.745 0.738 

Multi-Modal Uniform with only Gene Expression 
and Protein Expression modalities 

w/o feature selection 0.600 0.595 

with features selected by SVM-RFE on 2 data modalities at once 0.710 0.683 

with features selected by SVM-RFE independently on each data modality 0.735 0.725 
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Figure S1: Comparison #1: Uni-modal gene expression (GE) versus multi-modal uniform (MMU). 
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Figure S2: Comparison #2: Uni-modal gene expression (GE) versus multi-modal ensemble (MME). 
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Figure S3: Comparison #3: Uni-modal gene expression (GE) versus multi-modal specific (MMS). 
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Figure S4: Comparison #4: Multi-modal uniform (MMU) versus multi-modal ensemble (MME). 
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Figure S5: Comparison #5: Multi-modal uniform (MMU) versus multi-modal specific (MMS). 
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Figure S6: Comparison #6: Multi-modal ensemble (MME) versus multi-modal specific (MMS). 
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