Supplementary Information to

INFORMATION CONTENT AND ANALYSIS METHODS FOR MULTI-MODAL HIGH-THROUGHPUT BIOMEDICAL DATA

Bisakha Ray, Mikael Henaff, Sisi Ma, Efstratios Efstathiadis, Eric R. Peskin, Marco Picone, Tito Poli, Constantin F. Aliferis, Alexander Statnikov

Table S1: Data modalities, assaying platforms, and number of variables for each dataset.

	TCGA_BRCA1 and TCGA_BRCA2 Datasets									
Modality	Assaying platform information	Number of variables								
Gene expression	AgilentG4502A_07 (TCGA code)	90,797								
DNA mothylation	HumanMethylation27 (TCGA code) or	27 579 or 495 575								
DNA metriyiation	HumanMethylation450 (TCGA code)	27,378 01 483,373								
Protein expression	MDA_RPPA_Core (TCGA code)	166								
Somatic mutations	IlluminaGA_DNASeq (TCGA code)	12,497								
Clinical	(see text and Table S2 for details)	24								
TCGA_OVCA Datasets										
Modality	Assaying platform information	Number of variables								
Gene expression	AgilentG4502A_07 (TCGA code)	90,797								
DNA methylation	HumanMethylation27 (TCGA code)	27,578								
Protein expression	MDA_RPPA_Core (TCGA code)	166								
miRNA expression	H-miRNA_8x15Kv2 (TCGA code)	2,423								
Clinical	(see text and Table S2 for details)	23								
	MSKCC_PRCA Datasets									
Modality	Assaying platform information	Number of variables								
Gene expression	Affymetrix Human Exon 1.0 ST Array	26,447								
Convinumbor	Agilent-014693 Human Genome CGH	19 202								
copy number	Microarray 244A	10,202								
miPNA ovprossion	Agilent-019118 Human miRNA	269								
IIIRINA expression	Microarray 2.0 G4470B	506								
Clinical	(see text and Table S2 for details)	9								
	NEOMARK Datasets									
Modality	Assaying platform information	Number of variables								
Gene expression	Agilent	25,702								
Tumor imaging	MR/CT	34								
Clinical	(see text and Table S2 for details)	48								
	METABRIC Datasets									
Modality	Assaying platform information	Number of variables								
Gene expression	Illumina HT 12	48,803								
GWAS	Affymetrix SNP 6.0	909,662								
Clinical	(see text and Table S2 for details)	16								

Table S2: Clinical predictors for each dataset. 'N' is numeric/continuous and 'B' is binary in the "Value" column.

TCGA_BRCA1 and TCGA_BRCA2 Datasets									
Predictor	Value	Predictor	Value						
Age at initial pathologic diagnosis	N	Her2 immunohistochemistry level result = 0+/1+	В						
Anatomic organ subdivision = Left	В	Her2 immunohistochemistry level result = 2+	В						
Anatomic organ subdivision = Right	В	Her2 immunohistochemistry level result = 3+	В						
Anatomic organ subdivision = Not Specified	В	Menopause status = Not Specified or Indeterminate or Perimenopausal (grouped because of rare values)	В						
Ethnicity = Non-Hispanic	В	Menopause status = Premenopausal	В						
Ethnicity = Hispanic	В	Menopause status = Postmenopausal	В						
Ethnicity = Not Specified	В	Prior diagnosis = Yes/No	В						
Her2/Neu immunohistochemistry receptor status = Not Specified	В	Race = Not Specified	В						
Her2/Neu immunohistochemistry receptor status = Negative	В	Race = White	В						
Her2/Neu immunohistochemistry receptor status = Positive	В	Race = Black or African American	В						
Her2/Neu immunohistochemistry receptor status = Indeterminate/Equivocal	В	Race = Asian	В						
Her2 immunohistochemistry level result = Not Specified	В	Gender = Female/Male	В						
TCGA_	OVCA	Datasets							
Predictor	Value	Predictor	Value						
Age at initial pathologic diagnosis	Ν	Karnofsky score = 80	В						
Anatomic organ subdivision = Left	В	Karnofsky score = 100	В						
Anatomic organ subdivision = Right	В	Pretreatment history = Not Specified	В						
Anatomic organ subdivision = Not Specified	В	Pretreatment history = Present	В						
Ethnicity = Non-Hispanic	В	Pretreatment history = Absent	В						
Ethnicity = Hispanic	В	Race = Not Specified	В						
Ethnicity = Not Specified	В	Race = White	В						
Jewish origin = Missing	В	Race = Black or African American	В						
Jewish origin = Ashkenazi	В	Race = Asian	В						
Jewish origin = Non-Ashkenazi	В	Race = American Indian	В						
Karnofsky score = Not Specified	В	Conder - Fornels (Male	р						
Karnofsky score = 60	В	Gender – Fennale/ Male	D						
MSKCC_PRCA Datasets									
Predictor	Value	Predictor	Value						
Age at diagnosis	Ν	Race = White Hispanic	В						
Prostate specific antigen at diagnosis	Ν	Race = Asian	В						
Race = Black Non-Hispanic	В	Race = Other	В						
Race = White Non-Hispanic	В	Page - Not Specified	в						
Race = Black Hispanic	В	nace = NOL Specified	в						

(Table S2 is continued on the next page)

(Table S2 is continued	from the next page)
------------------------	---------------------

NEOMARK Datasets								
Predictor	Value	Predictor	Value					
Weight	N	вмі	N					
Weight = Not Available	В	BMI = Not Specified	В					
Height	Ν	Duration of precancerous lesions (months)	N					
Height = Not Available	В	Duration of precancerous lesions (months)= Not Specified	В					
Diabetes	В	Drinking habit = Heavy Drinker	В					
Allergies	В	Drinking habit = Moderate Drinker	В					
High cholesterol	В	Drinking habit = Not Specified	В					
Hypertension	В	Mobile prosthesis = Inferior	В					
Familiar history of malignance	В	Mobile prosthesis = Inferior and superior	В					
Smoker	В	Mobile prosthesis = Not Specified	В					
Cigarette quantity per day	Ν	Mobile prosthesis = Superior	В					
Cigarette quantity per day = Not Specified	В	Oral hygiene = Adequate	В					
Years smoking	Ν	Oral hygiene = Not Adequate	В					
Years smoking = Not Specified	В	Oral hygiene = Not Specified	В					
Ex-smoker	В	Eating habit = Normal	В					
When quit smoking (years ago)	Ν	Eating habit = Not Normal	В					
When quit smoking (years ago) = Not Specified	В	Eating habit = Not Available	В					
Alcohol use	В	Substance exposition = No	В					
Mechanical trauma	В	Substance exposition = Not Specified	В					
Dental cusps	В	Precancerous lesions = Erythroplankia	В					
Galvanic current	В	Precancerous lesions = Leukoplankia	В					
Infection	В	Precancerous lesions = No Lesions	В					
Hb hematic concentration	Ν	Precancerous lesions = Not Specified	В					
Hb hematic concentration = Not Specified	В	Precancerous lesions = Oral Submucosus Fibrosis	В					
MET	ABRIC	Datasets						
Predictor	Value	Predictor	Value					
Age at initial pathologic diagnosis	Ν	Site = 3	В					
Menopausal status = pre	В	Treatment = CT	В					
Menopausal status = post	В	Treatment = CT/HT	В					
P53 mutation status = mutated	В	Treatment = CT/HT/RT	В					
P53 mutation status = wild-type	В	Treatment = HT	В					
P53 mutation status = Not Specified	В	Treatment = HT/RT	В					
Site = 1	В	Treatment = RT	В					
Site = 2	В	Treatment = NONE	В					

Table S3: Core methods used in this work.

STANDARD UNI-MODAL METHODS						
Classification algorithm	Feature selection algorithm					
 Support vector machines (SVMs) with linear kernel: default penalty parameter C¹ SVMs with polynomial kernel: penalty parameter C and kernel degree q selected by nested cross-validation¹ Random forests: default parameters² Bayesian logistic regression: Gaussian priors, variance parameter selected by cross-validation^{3,4} Kernel ridge regression: radial basis function kernel, ridge and gamma parameters selected by cross-validation⁵⁻⁷ 	 Use all available features from single data modality; no feature selection is performed Perform feature selection in single data modality; use SVM-RFE⁸ 					
Each classifier is trained on features from multiple modalities of	abtained by different feature selection methods					
Data modalities are treated	d uniformly.					
Classification algorithm	Feature selection algorithm					
 Support vector machines (SVMs) with linear kernel: default penalty parameter C¹ Support vector machines (SVMs) with polynomial kernel: penalty parameter C and kernel degree q selected by nested cross-validation¹ Random forests: default parameters² Bayesian logistic regression: Gaussian priors, variance parameter selected by cross-validation^{3,4} Kernel ridge regression: radial basis function kernel, ridge and gamma parameters selected by cross-validation⁵⁻⁷ 	 Use all available features from all data modalities; no feature selection is performed (the datasets corresponding to different modalities are simply "concatenated") Perform feature selection independently for each data modality, then return the union of selected features; use SVM-RFE⁸ on the dataset from each data modality Perform feature selection in all data modalities at once; i.e., use SVM-RFE⁸ on the dataset obtained by "concatenating" all data modalities). 					
MULTI-MODAL ENSEMBLE (N	<u>IME) METHODS</u>					
The following methods ensemble classification models	derived from individual data modalities.					
 Ensemble of random forests (average): A random forest is fit in ensemble classifier is constructed by averaging the probabilities Ensemble of random forests (max): A random forest is fit indep classifier is constructed by taking the maximum of the probabili Ensemble of SVMs w/o feature selection: A linear SVM model is feature selection, then an ensemble classifier is constructed by modality as input features Ensemble of SVMs with feature selection: A linear SVM model i feature selection by SVM-RFE, then an ensemble classifier is constructed by model i feature selection by SVM-RFE, then an ensemble classifier is constructed by model it for the selection by SVM-RFE. 	dependently for each data modality, then an soutput by random forests endently for each data modality, then an ensemble ties output by random forests s fit independently for each data modality without logistic regression using the predictions for each s fit independently for each data modality with nstructed by logistic regression using the					
MULTI-MODAL SPECIFIC (M	MS) METHODS					
The following methods are classifiers designed spec	cifically to handle multi-modal data.					
 Sequential minimal optimization (SMO) for multiple kernel lea. SMO for multiple kernel learning ^{9,10}: Linear normalized kernel SMO for multiple kernel learning ^{9,10}: Polynomial kernel SMO for multiple kernel learning ^{9,10}: Polynomial normalized ke Least-squares SVMs for high-dimensional multi-modal data ¹¹: features 	rning ^{9,10} : Linear kernel ernel Normalized linear kernel, fixed weights, using all					

Table S4: Parameters and software implementations of core methods.

Method name	Parameter	Value(s)	Software implementation				
	GENERAL-PURP	OSE CLASSIFICATION ALGORIT	HMS				
(USED BOTH IN <u>ST</u>	ANDARD UNI-MODAL I	<u>METHODS</u> AND <u>MULTI-MODAL</u>	<u>. UNIFORM (MMU) METHODS)</u>				
SVMs with linear kernel	C (error penalty)	1	libsvm ^{12,13}				
SVMs with polynomial	C (error penalty)	optimized over (0.01, 0.1, 1, 10, 100)	http://www.csie.ntu.edu.tw/~cjlin/libs vm				
kernel	q (polynomial degree)	optimized over (1, 2, 3)					
Kernel ridge regression	Ridge	optimized over $(10^{-10}, 10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1)$ optimized over $(0.01, 0.1, 1, 10, 10^{-1},$	clop ⁷ http://clopinet.com/isabelle/Projects/E TH/Feature Selection w CLOP.html				
	γ (kernel width)	100) / total number of features					
Bayesian logistic	Prior	Gaussian	Bbr				
regression	variance parameter	optimized over (2 ⁻⁵ , 2 ⁻⁴ , 2 ⁻³ , 2 ⁻² , 2 ⁻¹ , 1, 2, 2 ² , 2 ³ , 2 ⁴)	http://www.bayesianregression.org/				
	ntree (number of trees)	500	B package randomForest				
	mtry (number of	\sqrt{total} number of features	http://cran.r-				
Random forests	features in a tree)		project.org/web/packages/randomFore				
	nodesize (min. size of	1	<u>st/index.html</u>				
USED BOTH IN ST		METHODS AND MULTI-MODAL					
No feature selection		-					
SVM-RFE	proportion of features to discard at each iteration in order to	20%	internal implementation on top of libsym				
	create nestea jeature						
	MULTI-MOD	AL ENSEMBLE (MME) METHO	DS				
	Random forest						
Ensemble of random	parameters	see above for Random forests					
joresis (average)	Ensemble function	average	internal implementation on top of R package randomForest				
Ensemble of random	Random forest	see above for Random forests					
forests (max)	parameters		-				
	Ensemble function	max					
Ensemble of SVMs w/o feature selection	SVM parameters	kernel					
	Ensemble function	obtained by logistic regression	internal implementation on top of				
Ensemble of SVMs with	SVM parameters	see above for SVMs with linear kernel	libsvm and R function glm				
feature selection	Feature selection	see above for SVM-RFE					
	purumeters MULTI-MOL	DAL SPECIEIC (MMS) METHOD	3				
SMO for multiple kernel							
learning	kernel	linear					
SMO for multiple kernel learning	kernel	linear normalized	SKMsmo				
SMO for multiple kernel learning	kernel	polynomial, degree = 2	http://www.di.ens.fr/~obozinski/code <u>html</u>				
SMO for multiple kernel learning	kernel	polynomial, degree = 2, normalized					
Least-squares SVMs for	kernel	linear normalized	НЛІЛІТ				
high-dimensional multi-	weights	fixed	http://homes.esat.kuleuven.be/~bioius				
modal data	feature selection	none	er/HIDIDIT/				

Table S5: Prior use of SVM-RFE feature selection method in various data modalities.

Modality	Study references
Clinical	14,15
Gene Expression	16-19
Protein Expression and Proteomics	20-23
Somatic Mutations	24
DNA Methylation	25,26
miRNA Expression	27-29
Copy Number	30,31
Tumor Imaging	32-35
GWAS	36-38

Table S6: Comparison of 16 feature selection methods with SVM-RFE in TCGA BRCA1 datasets/predictive tasks. The first two tables report predictive performance (AUC) averaged over 8 TCGA BRCA1 datasets/predictive tasks for various feature selection methods. As can be seen, SVM-RFE yields higher average predictive performance than any of 16 other feature selection methods, both in uni-modal and multi-modal applications.

	MRMR-	MRMR-	MRMR-	MRMR-	SPCA-	SPCA-	SPCA-	SPCA-	UKW-	UKW-	UKW-	UKW-	UKW-	UKW-			SVM-
	50	100	500	1000	50	100	500	1000	50	100	500	1000	Alpha	FDR	UKW	IVIKIVIK	RFE
Uni-Modal Clinical	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.501	0.516	0.515	0.493	0.528	0.640
Uni-Modal Gene Expression	0.617	0.613	0.614	0.624	0.626	0.631	0.609	0.610	0.610	0.606	0.580	0.588	0.591	0.609	0.640	0.644	0.758
Uni-Modal Protein Expression	0.680	0.687	0.689	0.689	0.619	0.638	0.689	0.689	0.668	0.668	0.689	0.689	0.628	0.644	0.623	0.638	0.789
Uni-Modal Somatic Mutations	0.555	0.581	0.574	0.572	0.507	0.499	0.523	0.524	0.567	0.562	0.571	0.557	0.580	0.583	0.620	0.628	0.700
Uni-Modal DNA Methylation	0.622	0.615	0.609	0.605	0.544	0.554	0.573	0.593	0.588	0.585	0.585	0.586	0.585	0.614	0.616	0.619	0.750
Multi-Modal Uniform [*]	0.617	0.612	0.609	0.617	0.592	0.599	0.609	0.607	0.614	0.607	0.587	0.598	0.598	0.613	0.628	0.629	0.753
Multi-Modal Uniform [†]	0.624	0.636	0.618	0.623	0.628	0.618	0.612	0.608	0.600	0.600	0.604	0.604	0.598	0.651	0.674	0.664	0.762

Mean predictive performance (AUC) obtained by linear SVM for various feature selection methods

Mean predictive performance (AUC) obtained by Bayesian Logistic Regression for various feature selection methods

	MRMR-	MRMR-	MRMR-	MRMR-	SPCA-	SPCA-	SPCA-	SPCA-	UKW-	UKW-	UKW-	UKW-	UKW-	UKW-			SVM-
	50	100	500	1000	50	100	500	1000	50	100	500	1000	Alpha	FDR	UKW		RFE
Uni-Modal Clinical	0.519	0.519	0.519	0.519	0.518	0.518	0.505	0.518	0.505	0.518	0.518	0.518	0.546	0.526	0.511	0.540	0.555
Uni-Modal Gene Expression	0.614	0.611	0.619	0.637	0.629	0.624	0.554	0.632	0.611	0.602	0.591	0.595	0.599	0.610	0.641	0.637	0.728
Uni-Modal Protein Expression	0.665	0.671	0.669	0.669	0.604	0.620	0.626	0.669	0.659	0.657	0.668	0.694	0.633	0.644	0.635	0.637	0.744
Uni-Modal Somatic Mutations	0.550	0.577	0.561	0.573	0.501	0.491	0.514	0.525	0.573	0.566	0.570	0.571	0.599	0.583	0.613	0.617	0.683
Uni-Modal DNA Methylation	0.613	0.619	0.608	0.607	0.542	0.544	0.569	0.583	0.592	0.599	0.605	0.605	0.624	0.613	0.634	0.608	0.719
Multi-Modal Uniform [*]	0.616	0.616	0.618	0.621	0.633	0.601	0.614	0.613	0.611	0.606	0.594	0.609	0.552	0.613	0.633	0.619	0.731
Multi-Modal Uniform ^{\dagger}	0.630	0.637	0.626	0.625	0.614	0.615	0.609	0.604	0.612	0.609	0.616	0.615	0.598	0.646	0.668	0.659	0.759

Description of used feature selection methods

MRMR-N (N=50,100,500,1000)	Minimum Redundancy Maximum Relevance Feature Selection (MRMR) ³⁹ with up to N features selected [#] .
SPCA-N (N=50,100,500,1000)	Sparse Principal Component Analysis (SPCA) ⁴⁰ with up to N features selected [#] .
UKW-N (N=50,100,500,1000)	Univariate Kruskal-Wallis (UKW) ⁴¹ with up to N features selected [#] .
UKW-Alpha	UKW with selecting features at 5% alpha level.
UKW-FDR	UKW with selecting features at 5% FDR level.
UKW	UKW with selecting the smallest subset of features that maximizes predictive performance of the classifier.
MRMR	MRMR with selecting the smallest subset of features that maximizes predictive performance of the classifier.
SVM-RFE	SVM-RFE (see Table S4 for details).

* Multi-Modal Uniform approach was applied here with feature selection performed in all modalities at once. * Multi-Modal Uniform approach was applied here with feature selection performed independently on individual modalities.

[#] If N was larger than the number of features in a particular modality, all features from than modality were selected.

Table S7: Additional comparison of uni-modal and multi-modal approaches on datasets/predictive tasks that have gene expression and protein expression modalities (TCGA_BRCA1, TCGA_BRCA2, and TCGA_OVCA). The predictive performance (AUC) is averaged over 27 datasets/predictive tasks and is provided separately for linear SVM and Bayesian Logistic Regression (BLR) classifiers. As can be seen, using only gene expression and protein expression for multi-modal analyses does not improve average predictive performance compared to uni-modal approaches and multi-modal based on all 5 data modalities.

Approach	Details	Area under ROC curve (AUC)		
		Linear SVM	BLR	
Uni Modal Cono Expression	w/o feature selection	0.599	0.601	
	with SVM-RFE feature selection	0.742	0.714	
Lini Madal Dratain Everacian	w/o feature selection	0.604	0.598	
oni-modal Protein expression	with SVM-RFE feature selection	0.723	0.668	
	w/o feature selection	0.602	0.580	
Multi-Modal Uniform with all 5 data modalities	with features selected by SVM-RFE on all data modalities at once	0.735	0.717	
	with features selected by SVM-RFE independently on each data modality	0.745	0.738	
	w/o feature selection	0.600	0.595	
Multi-Modal Uniform with <u>only Gene Expression</u>	with features selected by SVM-RFE on 2 data modalities at once	0.710	0.683	
	with features selected by SVM-RFE independently on each data modality	0.735	0.725	

Figure S1: Comparison #1: Uni-modal gene expression (GE) versus multi-modal uniform (MMU).

Figure S2: Comparison #2: Uni-modal gene expression (GE) versus multi-modal ensemble (MME).

Figure S3: Comparison #3: Uni-modal gene expression (GE) versus multi-modal specific (MMS).

Figure S4: Comparison #4: Multi-modal uniform (MMU) versus multi-modal ensemble (MME).

Figure S5: Comparison #5: Multi-modal uniform (MMU) versus multi-modal specific (MMS).

Figure S6: Comparison #6: Multi-modal ensemble (MME) versus multi-modal specific (MMS).

REFERENCES

- 1 Vapnik, V. N. *Statistical learning theory*. (Wiley, 1998).
- 2 Breiman, L. Random forests. *Machine Learning* **45**, 5-32 (2001).
- 3 Genkin, A., Lewis, D. D. & Madigan, D. Large-scale Bayesian logistic regression for text categorization. *Technometrics* **49**, 291-304 (2007).
- 4 Genkin, A., Lewis, D. D. & Madigan, D. Large-scale Bayesian logistic regression for text categorization. *Technical Report DIMACS* (2004).
- 5 Hastie, T., Tibshirani, R. & Friedman, J. H. *The elements of statistical learning: data mining, inference, and prediction*. (Springer, 2001).
- 6 Guyon, I. Kernel ridge regression tutorial. (<u>http://clopinet.com/isabelle/Projects/ETH/KernelRidge.pdf</u>, 2005).
- 7 Guyon, I. *et al.* Feature selection with the CLOP package. (Technical report, 2006, <u>http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf</u>, 2006).
- 8 Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. *Machine Learn* **46**, 389 422 (2002).
- 9 Lanckriet, G. R., Deng, M., Cristianini, N., Jordan, M. I. & Noble, W. S. Kernel-based data fusion and its application to protein function prediction in yeast. *Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing*, 300-311 (2004).
- 10 Bach, F. R., Lanckriet, G. R. G. & Jordan, M. I. Fast kernel learning using sequential minimal optimization. (2004).
- 11 Daemen, A. *et al.* A kernel-based integration of genome-wide data for clinical decision support. *Genome medicine* **1**, 39, doi:10.1186/gm39 (2009).
- 12 Chang, C. C. & Lin, C. J. LIBSVM: a library for support vector machines. *ACM Transactions on Intelligent Systems* and Technology (TIST) **2**, 27 (2011).
- 13 Fan, R. E., Chen, P. H. & Lin, C. J. Working set selection using second order information for training support vector machines. *Journal of Machine Learning Research* **6**, 1918 (2005).
- 14 Cho, B. H. *et al.* Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. *Artif Intell Med* **42**, 37-53, doi:DOI 10.1016/j.artmed.2007.09.005 (2008).
- 15 Yoon, S. & Kim, S. AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM. *Bmc Med Inform Decis* **9** (2009).
- 16 Mao, Y., Zhou, X. B., Pi, D. Y., Sun, Y. X. & Wong, S. T. C. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. *J Biomed Biotechnol*, 160-171, doi:Doi 10.1155/Jbb.2005.160 (2005).
- 17 Li, Y., Campbell, C. & Tipping, M. Bayesian automatic relevance determination algorithms for classifying gene expression data. *Bioinformatics* **18**, 1332-1339, doi:DOI 10.1093/bioinformatics/18.10.1332 (2002).
- 18 Tang, Y. C., Zhang, Y. Q. & Huang, Z. FCM-SVM-RFE gene feature selection algorithm for leukemia classification from microarray gene expression data. *leee Int Conf Fuzzy*, 97-101 (2005).
- 19 Peng, S. H. *et al.* Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. *Febs Lett* **555**, 358-362, doi:Doi 10.1016/S0014-5793(03)01275-4 (2003).
- 20 Carvalho, P. C., Hewel, J., Barbosa, V. C. & Yates, J. R. Identifying differences in protein expression levels by spectral counting and feature selection. *Genet Mol Res* **7**, 342-356 (2008).
- 21 Jong, K., Marchiori, E., Sebag, M. & van der Vaart, A. Feature selection in proteomic pattern data with support vector machines. *Proceedings of the 2004 leee Symposium on Computational Intelligence in Bioinformatics and Computational Biology*, 41-48 (2004).
- 22 Zhang, X. G. *et al.* Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. *Bmc Bioinformatics* **7** (2006).
- 23 Rajapakse, J. C., Duan, K. B. & Yeo, W. K. Proteomic cancer classification with mass spectrometry data. *Am J Pharmacogenomic* **5**, 281-292, doi:Doi 10.2165/00129785-200505050-00001 (2005).
- 24 Kim, J., Gao, L. & Tan, K. Multi-Analyte Network Markers for Tumor Prognosis. *Plos One* **7** (2012).

- 25 Das, R. *et al.* Computational prediction of methylation status in human genomic sequences. *P Natl Acad Sci USA* **103**, 10713-10716, doi:DOI 10.1073/pnas.0602949103 (2006).
- 26 Meng, H. L., Murrelle, E. L. & Li, G. Y. Identification of a small optimal subset of CpG sites as bio-markers from high-throughput DNA methylation profiles. *Bmc Bioinformatics* **9** (2008).
- 27 Hu, X. X. *et al.* A MicroRNA Expression Signature for Cervical Cancer Prognosis. *Cancer Res* **70**, 1441-1448, doi:Doi 10.1158/0008-5472.Can-09-3289 (2010).
- 28 Peng, S. H., Zeng, X. M., Li, X. B., Peng, X. N. & Chen, L. B. Multi-class cancer classification through gene expression profiles: microRNA versus mRNA. *J Genet Genomics* **36**, 409-416, doi:Doi 10.1016/S1673-8527(08)60130-7 (2009).
- 29 Ahsen, M. E., Singh, N. K., Boren, T., Vidyasagar, M. & White, M. A. A New Feature Selection Algorithm for Two-Class Classification Problems and Application to Endometrial Cancer. *Ieee Decis Contr P*, 2976-2982 (2012).
- Liu, J., Ranka, S. & Kahveci, T. Classification and feature selection algorithms for multi-class CGH data. *Bioinformatics* **24**, 186-195, doi:DOI 10.1093/bioinformatics/btn145 (2008).
- 31 Zhang, J. X. *et al.* Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response to anticancer EGFR tyrosine kinase inhibitors. *Mol Biosyst* **8**, 2645-2656, doi:Doi 10.1039/C2mb25165e (2012).
- 32 Zacharaki, E. I. *et al.* Classification of Brain Tumor Type and Grade Using MRI Texture and Shape in a Machine Learning Scheme. *Magn Reson Med* **62**, 1609-1618, doi:Doi 10.1002/Mrm.22147 (2009).
- Tuia, D., Camps-Valls, G., Matasci, G. & Kanevski, M. Learning Relevant Image Features With Multiple-Kernel Classification. *Ieee T Geosci Remote* **48**, 3780-3791, doi:Doi 10.1109/Tgrs.2010.2049496 (2010).
- 34 De Martino, F. *et al.* Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. *Neuroimage* **43**, 44-58, doi:DOI 10.1016/j.neuroimage.2008.06.037 (2008).
- 35 Archibald, R. & Fann, G. Feature selection and classification of hyperspectral images, with support vector machines. *Ieee Geosci Remote S* **4**, 674-677, doi:Doi 10.1109/Lgrs.2007.905116 (2007).
- 36 Yoon, D., Kim, Y. J. & Park, T. Phenotype prediction from genome-wide association studies: application to smoking behaviors. *Bmc Syst Biol* **6** (2012).
- 37 Kim, J., Sohn, I., Kim, D. & Jung, S. H. SNP Selection in Genome-Wide Association Studies via Penalized Support Vector Machine with MAX Test. *Comput Math Method M* (2013).
- 38 Augustin, R. *et al.* Bioinformatics identification of modules of transcription factor binding sites in Alzheimer's disease-related genes by in silico promoter analysis and microarrays. *International journal of Alzheimer's disease* **2011**, 154325, doi:10.4061/2011/154325 (2011).
- 39 Ding, C. & Peng, H. Minimum redundancy feature selection from microarray gene expression data. *J Bioinform.Comput.Biol.* **3**, 185-205 (2005).
- 40 Zou, H., Hastie, T. & Tibshirani, R. Sparse principal component analysis. *Journal of Computational and Graphical Statistics* **15**, 265-286 (2006).
- 41 Hollander, M. & Wolfe, D. *Nonparametric statistical methods*. Vol. 2nd (Wiley, 1999).