
Supplementary Figure Legends: 

 

Supplementary Figure S1. Malignant Characteristics of Invasive Adenocarcinoma 

in K-rasLA1 Mice 

(A – G) Representative images of H&E-stained sections from K-rasLA1 mice with 

invasive adenocarcinoma demonstrating invasion of pleural surface (A), intravasation 

into vasculature (B), implantation on intercostal muscle (C), invasion into hilar node (D), 

invasion into heart (E), and metastases to liver (F) and kidney (G). 

Scale bars denote 100 µm. 

 
Supplementary Figure S2. Radiation Effects on the Incidence of Various Endpoints 

in K-rasLA1 Mice 

Overall incidences of lung tumors extending into bronchial airways (A), pneumonia (B), 

lymphoma (C), leukemia (D), lymphoma and leukemia combined (E), myeloproliferative 

disease (F), and focal liver hyperplasia and hepatoma in combined (G). 

 
Supplementary Figure S3.  Comparative Genomic Analyses and Classifier Isolation 

from Irradiated Versus Unirradiated Control K-rasLA1 Mice. 

(A) Flowchart of overall analyses including integration of human cancer microarray 

datasets. 

(B) Clustering of mouse samples using raw expression values and lumi package detected 

single outlier for exclusion from further analysis.  

(C) Box plots of expression intensities from raw data (left panel) or after background 

correction and quantile normalization using MBCB package (right panel). 



(D) Beta-uniform mixture model analysis of p-values (left panels) and hierarchical 

clustering using classComparison package with t-tests comparing with 632-gene set. 

 
Supplementary Figure S4. Comparative Genomic Analysis of Whole Lungs Reveals 

Unique Gene Classifiers Capable of Specifying Individual Experimental Cohorts 

(A) Schematic representation of experimental design. 

(B) Hierarchical clustering and associated heatmap demonstrating capacity of 632 genes 

to segregate experimental cohorts.  (ANOVA; p < 0.05). 

(C) Principal component analysis validates capability of 632 genes to segregate 

experimental cohorts. 

(D – L) Hierarchical clustering (D – F), k-means clustering (G – I), and principal 

component analysis (J – L) demonstrate robust capacity of unique gene classifiers to 

identify and segregate the designated experimental cohort from the other two cohorts. 

 Black = Control; Red = Acute; Blue = Fractionated. 

 

Supplementary Figure S5. Only “Fractionated” Classifier Demonstrates Clinical 

Relevance for Lung Cancer Patient Survival 

(A – I) Lung adenocarcinoma patient samples were partitioned into two groups using k-

mean clustering and classifiers identifying unirradiated K-rasLA1 mice (A – C) or those 

irradiated with an acute (D – F) or fractionated dose (G – I) of 1.0 Gy 56Fe- particles.  

Kaplan-Meier survival plots using overall survival from each cluster demonstrates 

clinical relevance of “fractionated” classifier. 

Red and black lines denote high-risk and low-risk patients respectively.  Hazard ratios 

and 95% confidence intervals are relative to high-risk patients. 



Supplementary Figure S6.  “Fractionated” Classifier Capable of Predicting Overall 

Survival in Patients with Breast, but not Lung Squamous Cell Cancer 

Breast adenocarcinoma and lung squamous cell cancer patient samples were partitioned 

into two groups using k-means clustering and the 45-gene “fractionated” classifier.  

Analysis of overall survival from patients in each partitioned group demonstrates 

capacity of “fractionated” to identify patients with decreased survival with breast (A – C) 

and not lung squamous cell (D – E) carcinoma. 

Red and black lines denote high-risk and low-risk patients respectively.  Hazard ratios 

and 95% confidence intervals are relative to high-risk patients. 

 

Supplementary Figure S7.  Cox Regression Analysis Exposes 6 Genes Within 

“Fractionated” Classifier Which Retain Predictive Capacity 

6 genes result from univariate Cox regression analysis (p < 0.01) using SPORE dataset 

and the 45-gene “fractionated” classifier.  Patient samples from lung adenocarcinoma (A 

– C), squamous cell carcinoma, (F – G), and breast adenocarcinoma (C – E) were 

partitioned into two groups using 6-genes.  Kaplan-Meier survival analysis using overall 

survival from each partitioned group demonstrates predictive capacity of “fractionated” 

for lung and breast adenocarcinoma (A – E), and not lung squamous cell carcinoma (F – 

G), was retained. 

Red and black lines denote high-risk and low-risk patients respectively.  Hazard ratios 

and 95% confidence intervals are relative to high-risk patients. 

Supplementary Methods: 

Microarray and Survival Analyses 



All analysis was done using R 2.15.1 (http://www.R-project.org/) and tools in 

Bioconductor (http://www.bioconductor.org/) unless otherwise stated (1, 2).  Mouse 

microarrays were performed using Illumina® MouseWG-6 v2.0 Expression BeadChips 

(Illumina).  Samples were labeled and hybridized using Illumina® TotalPrep™ kit 

(Ambion).  Arrays were scanned using Illumina® Beadstation 500 BeadArray reader and 

data acquisitioned with BeadStudio (Illumina®).  One sample was identified as an outlier 

using the lumi package, and removed (Figure S3B) (3).  Remaining samples were 

background corrected (non-parametric) and quantile normalized using the Model-based 

Background Correction for Beadarray algorithm (MBCB package) (Figure S3C) (4).  K-

rasLA1 expression data have been deposited under the accession number GSE42233 in the 

National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) 

public repository (http://www.ncbi.nlm.nih.gov/geo/).  A variance filter was applied to 

retain only probes in which the inter-variation between any two classes was greater than 

the intra-variation in either class.  This resulted in 4580 of 45,281 probes representing 

4311 genes.  Our analysis was limited to a final set of 1495 genes after cross-species gene 

mapping using AILUN (http://ailun.stanford.edu/) and cross-platform gene mapping by 

Entrez ID (5).  An ANOVA, resulting in 632 genes, was performed using the multtest 

package (6); FDR was controlled using the Benjamini & Hochberg adjustment (α = .05).  

Hierarchical clustering of samples and clustering of genes for the heatmap (Figure S4B) 

were implemented using packages classDiscovery 

(http://bioinformatics.mdanderson.org/Software/OOMPA) (7) and pheatmap 

(http://CRAN.R-project.org/package=pheatmap) (8).  Principal component analysis 

(Figure S4C) using R’s prcomp was implemented without centering or scaling since all 



datasets were previously standardized.  For each pair of groups (Control vs. Acute, 

Control vs. Fractionated, and Acute vs. Fractionated), we performed t-tests in which FDR 

was controlled using the beta-uniform mixture modeling described by Pounds and Morris 

and implemented using the classComparison package 

(http://bioinformatics.mdanderson.org/Software/OOMPA) (9, 10).  Classifiers were 

assigned using the set of common overlapping genes from the t-tests for each group 

assignment.  Heatmaps for classifiers (Figures S4D - F) as previously described above.  

MacQueen’s k-means clustering algorithm (k=2) and classical multidimensional scaling 

were implemented to create ordination plots using the vegan package (http://CRAN.R-

project.org/package=vegan)  (Figures S4G - I) (11, 12).  Principal component analysis 

(Figures S4J - L) was performed as described above.  Network analysis was performed 

using Ingenuity Pathway Analysis (Figures 4A - D & 7A; Ingenuity® Systems, 

www.ingenuity.com). 

The NCI’s Director’s Challenge Consortium lung adenocarcinoma dataset (n=442) was 

downloaded from caArray (https://array.nci.nih.gov/caarray/home.action) (13).  Raw data 

was background corrected using default parameters and quantile normalized using 

RMAExpress (http://rmaexpress.bmbolstad.com/) (14, 15).  For the UT-Lung SPORE 

lung dataset (GSE41271, n=209), only samples annotated as adenocarcinoma stage I-III 

(n =151) or squamous cell carcinoma (n=57) and not having received neo-adjuvant 

therapy were utilized. Two additional lung datasets were downloaded from GEO 

(http://www.ncbi.nlm.nih.gov/geo/).  Raw data for the Aichi lung adenocarcinoma dataset 

(GSE13213, n=117) (16) was background corrected and quantile normalized using the 

limma package (17), and processed data was downloaded for the Raponi squamous cell 



carcinoma dataset (GSE4573, n=130) (18).  The following breast datasets were also 

downloaded from GEO: processed data from Miller et al (GSE3454, n=236) (19), 

Pawitan el at (GSE1456, n=159) (20), and the RData file for Loi et al (GSE6532, n=380) 

(21).  All breast datasets were limited to patients with complete annotations for disease 

specific survival time and status.  We used the median PC1 method described by Venet et 

al to classify patients into two groups (22).  For each of the classifiers, using the SPORE 

dataset, the first principal component (PC1) was computed and the dataset was split using 

the median of PC1.  Association between overall survival to each classifier was evaluated 

in the three lung adenocarcinoma datasets by log-rank comparison of survival curves 

using Kaplan-Meier estimators computed in R with the survival package (Figure 3) 

(http://CRAN.R-project.org/package=survival) (23).  The ‘predict’ method for prcomp 

was used with the “fractionated” classifier to predict the NCI and Aichi datasets using the 

first principal component computed from the SPORE dataset.  The “fractionated” 

classifier was also tested using the aforementioned squamous cell and breast carcinoma 

datasets (Figure 6) with median PC1 method.  To further evaluate the association of each 

classifier with overall survival (p < 0.01), univariate Cox regression was applied.  We 

repeated the median PC1 method for patient classification and survival analysis using the 

Cox-refined predictive 6-gene geneset derived the fractionated classifier (Figures 7B - 

K).  Using the expression profiles of the complete classifiers as well as the Cox-filtered 

geneset, k-means clustering (k=2) was used to partition datasets into 2 groups for which 

survival curves were compared as previously stated (Figure S7).



Supplementary Tables: 

Supplementary Table 1.  Logistic Regression Analysis of Unirradiated K-rasLA1 

Mice for Gender and Strain Effects on Various Endpoints. 

Phenotype Independent Variable Odds Ratio (95% CI) 

Invasive Carcinoma Gender 2.67 (0.63,11.23) 
Strain 4.00 (0.95, 16.92) 

Bronchial Extension Gender 1.25 (0.42, 3.73) 
Strain 1.09 (0.37, 3.23) 

Pneumonia Gender 1.09 (0.40, 2.98) 
Strain 0.71 (0.26, 1.94) 

Lymphoma Gender 2.24 (0.52, 9.66) 
Strain 1.22 (0.31, 4.73) 

Leukemia Gender 2.32 (0.41, 13.02) 
Strain 8.73 (0.98, 77.63) 

Myeloproliferative Disorder Gender 1.28 (0.20, 8.32) 
Strain N/A 

Gender relative to males; Strain relative to 129S2. 



Supplementary Table 2.  Logistic Regression Analysis for Gender and Strain Effects 
on Various Endpoints Controlling for Experiment. 
 

Phenotype Independent Variable Odds Ratio (95% CI) 

Invasive Carcinoma Gender 0.85 (0.57, 1.27) 
Strain 1.90 (1.27, 2.85) 

Bronchial Extension Gender 0.95 (0.67, 1.36) 
Strain 0.73 (0.51, 1.05) 

Pneumonia Gender 1.32 (0.93, 1.87) 
Strain 0.35 (0.24, 0.50) 

Lymphoma Gender 2.23 (1.28, 3.88) 
Strain 1.94 (1.13, 3.32) 

Leukemia Gender 1.28 (0.68, 2.38) 
Strain 4.18 (2.08, 8.42) 

Myeloproliferative Disorder Gender 1.37 (0.60, 3.14) 
Strain 7.69 (2.57, 23.02) 

Relative to unirradiated K-rasLA1 mice; Gender relative to males; Strain relative to 129S2 



 
Supplementary Table 3.  Logistic Regression Analysis of Radiation Effects on the 

Incidence of Invasive Adenocarcinoma Controlling for Gender and Strain. 

Experimental Group Independent Variable Odds Ratio (95% CI) 

X- 1.0 x 1 Gender 1.19 (0.45, 3.19) 
Strain 1.24 (0.46, 3.34) 

X- 0.2 x 5 Gender 1.19 (0.44, 3.19) 
Strain 1.50 (0.55, 4.07) 

X- 0.4 x 5 Gender 3.00 (1.13, 7.99) 
Strain 3.09 (1.15, 8.30) 

Fe- 0.1 Gy x 1 Gender 2.61 (1.10, 6.19) 
Strain 2.63 (1.10, 6.29) 

Fe- 0.2 Gy x 1 Gender 0.96 (0.37, 2.47) 
Strain 0.98 (0.38, 2.54) 

Fe- 1.0 Gy x 1 Gender 1.29 (0.55, 3.05) 
Strain 1.37 (0.58, 3.25) 

Fe- 0.2 Gy x 5 Gender 2.47 (1.05, 5.80) 
Strain 2.62 (1.11, 6.20) 

Fe- 0.1 Gy x 5 Gender 1.51 (0.57, 3.99) 
Strain 1.56 (0.59, 4.15) 

Fe- (0.1 Gy x 5) x 2 Gender 1.89 (0.72, 4.95) 
Strain 1.75 (0.67, 4.63) 

Relative to unirradiated K-rasLA1 mice; Gender relative to males; Strain relative to 129S2 



 
Supplementary Table 4.  Multivariate Cox Analysis for Gender and Strain Effects 

on Overall Survival Controlling for Experiment. 

Phenotype Independent Variable Hazard Ratio (95% CI) 

Overall Survival Gender 1.17 (0.99, 1.39) 
Strain 0.75 (0.63, 0.90 

Relative to unirradiated K-rasLA1 mice; Gender relative to males; Strain relative to 129S2 



 
Supplementary Table 5.  Multivariate Cox Analysis of Radiation Effects on Overall 

Survival Controlling for Gender and Strain Effects. 

.

Experimental Group Independent Variable Hazard Ratio (95% CI) 

X- 1.0 x 1 Gender 1.73 (1.13, 2.64) 
Strain 1.68 (1.10, 2.57) 

X- 0.2 x 5 Gender 1.56 (1.02, 2.40) 
Strain 1.41 (0.92, 2.17) 

X- 0.4 x 5 Gender 3.00 (1.87, 4.81) 
Strain 3.09 (1.92, 4.95) 

Fe- 0.1 Gy x 1 Gender 2.07 (1.40, 3.04) 
Strain 2.12 (1.44, 3.12) 

Fe- 0.2 Gy x 1 Gender 2.97 (2.01, 4.38) 
Strain 2.99 (2.03, 4.41) 

Fe- 1.0 Gy x 1 Gender 3.39 (2.34, 4.91) 
Strain 3.46 (2.39, 5.01) 

Fe- 0.2 Gy x 5 Gender 2.99 (2.03, 4.40) 
Strain 2.95 (2.00, 4.35) 

Fe- 0.1 Gy x 5 Gender 2.09 (1.40, 3.12) 
Strain 2.24 (1.49, 3.34) 

Fe- (0.1 Gy x 5) x 2 Gender 5.19 (3.35, 8.04) 
Strain 5.51 (3.59, 8.56) 

Relative to unirradiated K-rasLA1 mice; Gender relative to males; Strain relative to 129S2 



 
Supplementary Table 6.  IPA Network Annotations Associated with Corresponding 

Gene Lists. 

Gene List Number of 
Networks 

Network 
Number 

Network Functions Number of ANOVA 
Genes 

Included (% Total) 

ANOVA 10 

1 DNA Replication, 
Recombination, and Repair; Gene 

Expression; Infectious Disease 

54 (8.5%) 

2 Gene Expression; Cell Cycle; 
DNA Replication, 

Recombination, and Repair 

50 (7.9%) 

3 Cellular Movement; Immune Cell 
Trafficking; Gastrointestinal 

Disease 

46 (7.3%) 

4 Developmental Disorder; Cell-
To-Cell Signaling and Interaction; 

Tissue Development 

42 (6.6%) 

5 Humoral Immune Response; 
Protein Synthesis; Cellular 

Compromise 

42 (6.6%) 

6 Infectious Disease; Cell Cycle; 
Organismal Development 

40 (6.3%) 
 

7 Cancer; Hematological Disease; 
Organismal Injury and 

Abnormalities 

39 (6.2%) 

8 Post-Translational Modification; 
Cell Death and Survival; Tumor 

Morphology 

38 (6.0%) 

9 Cell Death and Survival; Cancer; 
Neurological Disease 

34 (5.4%) 

10 Cell Cycle; DNA Replication, 
Recombination, and Repair; Cell-
To-Cell Signaling and Interaction 

33 (5.2%) 

Fractionated 
Classifier 3 

1 Infectious Disease; DNA 
Replication, Recombination, and 

Repair; Gene Expression 

26 (57.8%) 

2 Small Molecule Biochemistry; 
Organismal Injury and 

Abnormalities; Renal Damage 

18 (40%) 

3 Cell Morphology; Cellular 
Assembly and Organization; 

Cellular Function and 
Maintenance 

1 (2.2%) 

6-gene 
Fractionated 

Classifier 

1 1 Hematological Disease; 
Metabolic Disease; Cellular 

Compromise 

6 (100%) 
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