SUPPLEMENTARY DATA

MARKER INFORMATION

Identification of microsatellite markers and their ability to discriminate between *Cardamine amara* and *C. rivularis* auct.

Approach

454 sequencing

Total genomic DNA was extracted using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer's instructions from one individual of each of the assumed diploid progenitors, *C. amara* and *C. rivularis* auct., originating at Urnerboden. Sequencing libraries, sequencing of a ½ picotiter plate for each sample using the GS FLX instrument (Roche, Basel, Switzerland) and adapter trimming of the resulting data were performed at the Functional Genomics Center (Zürich, Switzerland).

Microsatellite loci identification

Microsatellite repeats were identified directly based on unassembled reads using msatcommander v 0.8.2 (Faircloth, 2008). SSR loci with a higher number of repeat units (dinucleotides containing at least 10, trinucleotides with at least 7, tetra- and pentanucleotides with minimum 6 repeat units) were searched for. Primers were designed directly during the repeat identification as implemented in msatcommander, under default settings.

Identification of species specificity in-silico

Our strategy was to target progenitor-specific loci. To identify the ability of the microsatellite markers to discriminate between the two *Cardamine* species, the primers designed for one species were compared with the sequences (reads) of the other species. At first sequence databases were created using the formatdb script as implemented in BLAST (Altschul *et al.*, 1990) from the *C. amara* and *C. rivularis* auct. reads. Afterwards the primer sequences of one species (combined to two fasta files, one containing all forward and the other all reverse primer sequences) were compared to the sequence database of the other species running the blastn function in BLAST. This comparison was performed for the forward and reverse primers separately. The search results were visualized using the PLAN web application (He *et al.*, 2007). Those markers for which at least one primer did not match any sequence of the other species at the last 3 bp at its 3' end were selected, reduced for duplicities (i.e., collapsing reads/markers with identical sequences into a single marker) and tested experimentally to confirm their specificity.

Cross-amplification tests

The markers selected based on BLAST comparisons were amplified on a subset of four individuals of each *C. amara* and *C. rivularis* auct. from Urnerboden. PCRs were performed in 25 µl reactions containing 1x PCR buffer with KCl (Fermentas, St. Leon, Germany), 2.5 mM of MgCl₂, 0.2 mM of each dNTP, 0.2 µM of both primers, 0.5 U of Taq DNA polymerase (Fermentas) and approximately 20 ng of DNA. The cycling conditions were: 5 min at 95°C followed by 35 cycles of 95°C for 30s, 55-58°C for 30s and 72°C for 1.5 min and final extension at 72°C for 10 min. The amplification products were visualized on 2.5% agarose gels stained with ethidium bromide. Those markers that did not cross-amplify to any accession of the other species were amplified again under the conditions modified according to Schuelke (2000), to facilitate fluorescent labeling of the PCR products. The samples were analysed on ABI 3100 automated sequencer (Applied Biosystems, Foster City, CA, USA) with GeneScan 500 LIZ internal size standard (Applied Biosystems), in order to estimate the fragment lengths and quality (presence of unspecific products or potential

locus duplications). GeneMarker v. 1.80 (Softgenetics, State College, PA, USA) was used to call the allele sizes. The specificity of the markers was finally verified on the entire set of sampled individuals, checking the products on agarose gels.

Results

454 sequencing, microsatellite identification and BLAST comparisons

The 454 sequencing yielded 593,279 and 576,096 reads for *C. amara* and *C. rivularis* auct., respectively, with an average read length of 374 bp. For *C. amara* 4,542 reads containing microsatellite repeats were identified. In *C. rivularis* auct. 4,954 repeats contained microsatellite repeats. Primers could be designed for 777 and 673 repeats for *C. amara* and *C. rivularis* auct., respectively. Based on the BLAST analyses only 31 primer pairs designed for *C. amara* did not match significantly the *C. rivularis* auct. sequences. In case of *C. rivularis* auct., 29 primer pairs were shown to be potentially species-specific.

Characterisation of the microsatellite loci and experimental evaluation of their species specificity

Amplification of the markers selected according to the BLAST search results in four accessions of each species showed that only 15 loci of *C. amara* and 9 loci of *C. rivularis* auct. were not amplifying in the other species (see Table S1). Products of unspecific amplification were not observed in any of the markers. The extended amplification tests, however, revealed that three *C. rivularis* auct. markers (Criv2, Criv20 and Criv48) and one *C. amara* marker (Cama16) failed repeatedly to amplify in a high number of accessions (indicating the occurrence of null alleles) and/or produced poorly scorable peaks, and were therefore eliminated. Four markers showing initial specificity to *C. amara* were found to cross-amplify in *C. rivularis* auct. and *C. pratensis* as well (these loci were kept in the analyses and denoted as C-all loci in Table S1).

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215: 403–410.
- **Faircloth BC. 2008**. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. *Molecular Ecology Resources* **8**: 92–94.
- He J, Dai X, Zhao X. 2007. PLAN: A web platform for automating high-throughput BLAST searches and for managing and mining results. *BMC Bioinformatics* **8**: 53.
- Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

Table S1. Characteristics of the microsatellite markers used in the present study. Markers excluded from the study due to the occurrence of null alleles and/or ambiguous allele determination are marked by asterisks

Marker	Repeat motif	Primer sequence (5'→3')	Allele size range (bp)	GenBank accession no
Criv loci (C.	rivularis auct./C. pratens	is-specific loci)		
Q · 15		F: GCATTGTCGTAAGCTGCC	210.252	
Criv15	$(GTT)_7$	R: CACAGCAAACCATGTGCAAC	218-262	KF998167
Crim16		F: CTGATTTGACAAGCCAAGGG	209 414	
Crivio	$(AAC)_8$	R: TTGCTATTCGCCAGCTTCG	398-414	KF998168
Cuiv17	(CTT)	F: CTTCTTCGCTGGGAATCG	218 262	
CIIVI /	$(CTT)_7$	R: CACGGAGAAGTCCAGTTGC	218-202	KF998169
Criv18		F: CCATACTTGCGCCTCGTC	227 247	
CIIVIO	$(CATCT)_8$	R: TGCAAAGGCGTTAGGACAAC	237-247	KF998170
Criv23	(CTT) (CGT) (CTT)	F: AATTCATTTCTCCTTGCCGAC	329-387	
CIIV25	(C11)6(C01)3(C11)8	R: AGGCAACGAATCCGCTAAC	327-387	KF998172
Criv34	(CTT)-	F: CCTGAGGCAATCATCCTT	180-205	
011734	(CTT)7	R: GGTGGTACACGTGATCTGC	180-205	KF998173
Criv2*	$(\Delta TC)_{e}N_{e}(\Delta TC)_{e}$	F: AACTTCTCAGGGCCGGTTC	146-159	
CIIV2	(110)5141(110)9	R: CCCTATCTCTCCATGTGGGC	140-137	KF998166
Criv20*	$(\mathbf{A}\mathbf{A}\mathbf{G})_{\mathbf{a}}$	F: CCTCCCAAAGAATGCCCG	299-340	
CIIV20	(AAO)8	R: TTGCAATGTCGTGGACAGC	277-340	KF998171
Criv48*	$(\Delta \Delta G)_{-}$	F: CCACCAGCTCACTGCTTTAAC	338-340	
(AAG) ₇		R: TCGGAATGTCGGTTTATTCGG	556-540	KF998174
Cama loci (C	C. amara-specific loci)			
G 1	(AT)	F: GGAGATCTTCGCGGTTTGAC	208 226	
Callia	(A1)10	R: GCAGCGCGGAAGAGTTG	208-220	KF998151
Cama8	(AT)	F: ACACCGCATAGGAACGAGC	215-229	
Calilao	(A1)]0	R: GTTAGCACATTTGGACCTGGG	215-227	KF998153
Cama11	(CCT) _c C(ATC) ₁₁	F: GCACTAGTATCAAATCCGAGAACC	248-270	
Cullur		R: ACAGAGTGGAAGTCTCGTGG	240 270	KF998154
Cama13	(AT) ₁₀	F: CTCCAGCTGCATGACCAAG	339-359	
Cullury	(11)][]	R: GGTGGCTCCAACCTACCC	337 337	KF998155
Cama15	(AAG) ₇	F: GGAAGTCAACCACACATGG	250-273	
Cumuro	(1110)/	R: GTTTGTTTGCCACCTTCGTC	230 213	KF998156
Cama16*	(AT)11	F: TCGACGGCCTTGTTGAATAC	244-268	
Cumuro		R: GTAGAGAGACGCTGCTCCG	211 200	KF998157
Cama17	$(\mathbf{AG})_{in}$	F: GCTACTGTATTCCCAAGATTCCAC	135-162	
Cullur	(10)]3	R: GTCCGCTAAGCACGTATGG	155 162	KF998158
Como 21		F: GGTTGCTCCACAGTCATGG	212 215	
Callia21	$(AIC)_7$	R: CTGTGCGCAGAAACGTACC	512-515	KF998160
C		F: AACTAATGCGTCCGTCCAC	257 200	
Cama27	$(A1)_{10}$	R: TCAATCTTGTGCCTCTTATCTGG	357-390	KF998163
G 32		F: CCGCCTTGCACGATTCTAAC	172 101	
Cama32	$(CGT)_{4}(AAT)_8$	R: CGGAGGAGCGTAGATGC	1/3-181	KF998164
_		F: AGAATTCACATGGACTTACGC		
Cama34	$(AC)_{12}(AT)_4$	R: CGTTGGTTGCTTAACTATCCTCG	276-297	KF998165

(continued)

Marker	Repeat motif	Primer sequence (5'→3')	Allele size range (bp)	GenBank accession no		
C-all loci (not	n-specific loci)					
Cama7	(AAG) _o	F: GACGAAGTATGAACCTGAGCAC	308-320			
Cama/	(1110)8	R: TGACTGGGAATTGACCTTCG				
Cama19	$(AAC)_{\tau}$ $(ATC)_{\tau}$	F: ATGGCGTTGAAGCCGTTG	291-297			
Cullury	(AAC) ₅ (ATC) ₇	R: CCGTTGACCGTGCTTTAC	2)1 2)1	KF998159		
Cama23	(AAG) _e	F: CAGCACAAGTACAGATGCG	148-164			
Cullu25	(AAO) ₈	R: GCTTCGAAAGCGAAGATCGG	140 104	KF998161		
Cama25	$(\Delta \Delta G)_{\tau}$	F: CAAGAAAGCGGATGCGGG	144-150			
Cumu25	(1110)/	R: AAACACGCCTCACAAAGTTC	177 150	KF998162		

Table S2. Genetic diversity measures for the sampled *Cardamine* taxa and populations. Population abbreviations are presented in Appendix 1. 2n, ploidy level (more details in Appendix 1); N_{ind} , number of sampled individuals; N_{phe} , number of observed multilocus allele phenotypes; A, total number of alleles from all loci; A', average number of alleles per locus; A_i' , average number of alleles per locus; A_i , average number of alleles per locus; A_i , average number of alleles per locus; H_0 , proportion of observed (partial) heterozygotes, averaged over loci. **A.** Data from ten *C. amara*-specific (Cama), and six *C. rivularis* auct.-specific (Criv) loci. **B.** Data from four shared (C-all) microsatellite loci.

A.

Species/Population	2 <i>n</i>	$N_{\rm ind}$	$N_{\rm phe}$	Α	A'	$A_{\rm i}$ '	<i>P</i> (%)	Shan. div.	$H_{\rm o}$
triploid C. ×insueta – Urne	erboden	l							
(Criv loci)		91	16	13	2.17	1.82	67	2.19	0.54
(Cama loci)		91	3	17	1.70	1.00	60	0.36	0.00
hypohexaploid C. ×schulz	<i>ii –</i> Urn	erboden							
(Criv loci)		22	1	19	3.17	3.17	0	0.00	1.00
(Cama loci)		22	1	10	1.00	1.00	0	0.00	0.00
hypopentaploid C. ×schul	z <i>ii –</i> Ur	nerbode	n						
(Criv loci)		6	1	17	2.83	2.83	0	0.00	0.83
(Cama loci)		6	1	10	1.00	1.00	0	0.00	0.00
triploid hybrid - Lej da Ch	nampfèr	•							
(Criv loci)		15	2	6	1.00	1.08	20	0.67	0.08
(Cama loci)		15	2	17	1.70	1.60	10	0.64	0.50
C. rivularis auct. – Urnerb	oden								
Urnerboden	2x	97	61	15	2.50	1.72	83	3.56	0.50
C. pratensis – Urnerboden									
Urnerboden	4x	15	13	32	5.33	1.98	100	2.40	0.49
C. rivularis auct outside	Urnerb	oden							
Valbella	2x	6	6	20	3.33	1.80	83	1.79	0.58
Maloja	2x	6	6	16	2.67	1.67	83	1.79	0.53
Lej da Staz	2x	10	2	7	1.17	1.10	10	0.67	0.10
Lej da Champfèr	2x	15	9	17	2.83	1.70	100	1.97	0.52
Weinebene	2x	5	5	18	3.00	1.58	67	1.61	0.51
Koralpe	2x	9	9	23	3.83	1.70	100	2.20	0.48
Falkertsee	4x	6	6	20	3.33	2.25	83	1.79	0.67
Plannersee	4x	6	6	23	3.83	2.03	83	1.79	0.61
C. pratensis – outside Urne	rboden								
Trieben	4x	6	6	36	6.00	2.81	100	1.79	0.76
Flattnitz	4x	6	6	26	4.33	2.08	83	1.79	0.69
Vordernberg	4x	6	6	26	4.33	2.00	83	1.79	0.53
Wegscheid	6 <i>x</i>	6	6	31	5.17	2.93	100	1.79	0.80

(continued)

C. amara subsp. amara									
Urnerboden	2x	55	42	49	4.90	1.55	100	3.61	0.55
Ste-Croix	2x	6	2	15	1.50	1.42	10	0.45	0.42
Wehrenbach	2x	9	4	26	2.60	1.40	70	1.15	0.40
Železná	2x	6	6	27	2.70	1.45	80	1.79	0.45
Vrbice	2x	5	5	28	2.80	1.46	80	1.61	0.46
Hradišťany	2x	6	4	21	2.10	1.43	70	1.24	0.43
Višňová	2x	6	5	35	3.50	1.62	90	1.56	0.62
Telgárt	2x	6	5	25	2.50	1.50	80	1.56	0.50
Capatanii	2x	6	6	24	2.40	1.19	70	1.79	0.19
Osnabrück	2x	6	3	23	2.30	1.53	80	0.87	0.53
C. amara subsp. austriace	a								
Lej da Champfèr	4x	9	2	18	1.80	1.98	10	0.53	0.75
Flüelapass	4x	6	4	22	2.20	1.70	70	1.33	0.60
Koralpe	4x	6	5	27	2.70	1.97	100	1.56	0.75
· · ·									

В.

Species/Pop.	2 <i>n</i>	N _{ind}	$N_{\rm phe}$	Α	A'	$A_{\rm i}$ '	<i>P</i> (%)	Shan. div.	$H_{ m o}$
triploid C. ×insueta – U	Irnerbode	n							
		91	6	10	2.50	1.37	75	1.47	0.33
hypohexaploid C. ×sch	<i>ulzii –</i> Ur	nerbode	n						
		22	1	9	2.25	2.25	0	0.00	0.50
hypopentaploid C. ×sch	hulzii – U	rnerbod	en						
		6	1	6	1.50	1.50	0	0.00	0.25
triploid hybrid - Lej da	Champfè	èr							
		15	1	7	1.75	1.75	0	0.00	0.50
C. rivularis auct. – Urne	erboden								
Urnerboden	2x	96	8	13	3.25	1.36	75	1.19	0.34
C. pratensis – Urnerbod	en								
Urnerboden	4x	15	13	21	5.25	2.17	100	2.49	0.70
C. rivularis auct. – outs	ide Urner	boden							
Valbella	2x	6	2	7	1.75	1.75	50	0.45	0.71
Maloja	2x	6	5	8	2.00	1.75	50	1.56	0.67
Lej da Staz	2x	10	2	7	1.75	1.68	25	0.61	0.68
Lej da Champfèr	2x	15	5	8	2.00	1.67	50	1.44	0.63
Weinebene	2x	5	4	11	2.75	1.65	100	1.33	0.65
Koralpe	2x	9	9	13	3.25	1.75	100	2.20	0.72
Falkertsee	4x	6	6	13	3.25	2.17	75	1.79	0.67
Plannersee	4x	6	6	16	4.00	2.25	100	1.79	0.92
C. pratensis – outside U	rnerboder	n							
Trieben	4x	6	6	22	5.50	2.50	100	1.79	0.79
Flattnitz	4x	6	6	17	4.25	2.17	100	1.79	0.88
Vordernberg	4x	6	6	19	4.75	2.58	100	1.79	0.88
Wegscheid	6 <i>x</i>	6	6	21	5.25	2.38	100	1.79	0.91
C. amara subsp. amara									
Urnerboden	2x	55	26	15	3.75	1.44	100	3.45	0.44
Ste-Croix	2x	6	1	6	1.50	1.50	0	0.00	0.50
Wehrenbach	2x	9	3	7	1.75	1.39	75	1.00	0.39
Železná	2x	6	4	9	2.25	1.46	75	1.33	0.46
Vrbice	2x	5	3	6	1.50	1.20	50	1.05	0.20
Hradišťany	2x	6	3	7	1.75	1.38	50	0.87	0.38
Višňová	2x	6	5	10	2.50	1.44	100	1.56	0.44
Telgárt	2x	6	5	10	2.50	1.71	100	1.56	0.67
Capatanii	2x	6	5	9	2.25	1.25	100	1.56	0.25
Osnabrück	2x	6	3	7	1.75	1.17	75	0.87	0.17
C. amara subsp. austria	ıca								
Lej da Champfèr	4x	9	2	4	1.00	1.72	25	0.35	0.72
Flüelapass	4x	6	4	8	2.00	1.71	75	1.33	0.54
Koralpe	4x	6	3	9	2.25	1.79	50	1.01	0.63

Table S3. Allele-sharing patterns at selected microsatellite loci. Entries (fields with "1"s) indicate the allele presence, those in bold with superscripts highlight alleles shared by the hybrids and some of the progenitor species: ^A, *C. amara*-specific alleles; ^{R/P}, *C. rivularis* auct./*C. pratensis*-specific alleles (asterisks indicate specific alleles distinguishing between these two species at the Urneboden site); ⁿ, non-specific alleles, shared by both progenitors. *Rivularis* Urnerb., *C. rivularis* auct. from Urnerboden; *pratensis* Urnerb., *C. pratensis* from Urnerboden; *rivularis* other loc., *C. rivularis* auct. from other localities; *rivularis* other loc., *C. amara* from Urnerboden; *amara* other loc., *C. amara* from other localities; *xinsueta*, *C. xinsueta* from Urnerboden; *6x ×schulzii*, hypohexaploid *C. ×schulzii* from Urnerboden; *5x × schulzii*, hypopentaploid *C. ×schulzii* from Urnerboden; *C. amara*, triploid hybrid from Lej da Champfèr.

Locus Cama17 (Cama locus)

Alleles/Taxon	136	142	150	152	154	156	158	160	162
×insueta (2n=24)	1 ^A								1 ^A
$6x \times schulzii$ (2n=46)									1 ^A
$5x \times schulzii$ (2n=38)									1 ^A
Champfèr h. (2 <i>n</i> =24)				1 ^A					
amara Urnerb.	1 ^A			1 ^A	1			1	1 ^A
amara other loc.	1 ^A	1	1	1 ^A		1	1	1	1 ^A

Locus Criv17 (Criv locus)

	/												
Alleles/Taxon	218	260	299	302	311	314	323	326	329	332	335	338	341
×insueta (2n=24)	1 ^{R/P}												
$6x \times schulzii$ (2n=46)	1 ^{R/P}		1 ^{R/P*}										
$5x \times schulzii$ (2n=38)	1 ^{R/P}												
Champfèr h. (2 <i>n</i> =24)											1 ^{R/P}		1 ^{R/P}
rivularis Urnerb.	1 ^{R/P}												
pratensis Urnerb.	1 ^{R/P}		1 ^{R/P*}					1					
rivularis other loc.		1	1 ^{R/P}	1	1	1	1		1	1	1 ^{R/P}	1	1 ^{R/P}
pratensis other loc.			1 ^{R/P}	1									

Locus Cama25 (C-all locus)

Alleles/Taxon	145	148	151	154	157	160	163	166	169	172	175
\times insueta (2n=24)	1 ^A		1 ⁿ				1 ^{R/P}	1 ^{R/P}			
$6x \times schulzii$ (2n=46)	1 ^A			1 ^{R/P*}			1 ^{R/P}	1 ^{R/P}			
$5x \times schulzii$ (2n=38)	1 ^A				1 ^{R*/P}			1 ^{R/P}			
Champfèr h. (2 <i>n</i> =24)	1 ^A		1 ⁿ						1 ^{R/P}		
rivularis Urnerb.					1 ^{R*/P}	1	1 ^{R/P}	1 ^{R/P}	1 ^{R/P}		1
pratensis Urnerb.				1 ^{R/P*}		1	1 ^{R/P}	1 ^{R/P}	1 ^{R/P}	1	
rivularis other loc.		1	1 ⁿ	1 ^{R/P}		1	1 ^{R/P}	1 ^{R/P}	1 ^{R/P}		
pratensis other loc.		1		1 ^{R/P}		1	1 ^{R/P}	1 ^{R/P}	1 ^{R/P}	1	
amara Urnerb.	1 ^A	1	1 ⁿ								
amara other loc.	1 ^A	1	1 ⁿ								

Figure S1. Neighbour-joining tree of 266 individuals based on 10 *Cardamine amara*-specific (Cama) microsatellite loci and Bruvo distance. Colours indicate species/group affiliation. Ovals denoted STRU-1 - STRU-3 indicate genetic clusters as resolved by Bayesian clustering at optimal K=3. Adm. stands for genetic admixture (equivocal assignment).

Figure S2. Principal coordinate analysis of 333 individuals based on six *Cardamine rivularis* auct./*C. pratensis*-specific (Criv) microsatellite loci and Jaccard coefficient. Percentage of variation represented by the axes is indicated. Colours and symbols indicate species/group affiliation.

Figure S3. Neighbour-joining tree of 464 *Cardamine* individuals based on four shared (C-all) microsatellite loci and Jaccard coefficient. Colours indicate species/group affiliation. Coloured ovals denoted STRU-1 and STRU-2 indicate genetic clusters as resolved by Bayesian clustering at optimal K=2. Admixture stands for individuals showing genetic admixture.

