

Caenorhabditis elegans SWI/SNF subunits control sequential developmental stages in the somatic gonad

Edward E. Large* and Laura D. Mathies* ${}^{\$}$

* Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614

[§] Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613

Corresponding author:

Laura D. Mathies Department of Pharmacology and Toxicology 1220 East Broad St. Richmond, VA 23298-0613 Phone: (804) 828-2069 Fax: (804) 828-4794 Email: Idmathies@vcu.edu

DOI: 10.1534/g3.113.009852

Figure S1 SWI/SNF deletion alleles. All deletion alleles were PCR amplified and verified by sequencing across the deletion breakpoint (Table S1). The extent of each deletion is indicated on the gene diagrams.

Figure S2 Molecular analysis of *swsn-3* and *swsn-5* alleles. PCR assays are indicated on gene diagrams and representative gels are shown. Template for RT-PCR was from *tm3647, ok622,* or wild-type and reactions with (+) and without (-) reverse transcriptase are indicated. Genomic DNA was from *ok622* and wild-type. Primer sequences are in Table S2. (A) RT-PCR assays were performed using primers RA561/RA562 (not shown), RA1049/RA562 (1), RA1048/RA562 (2), RA1050/RA562 (3). Transcript containing the entire *swsn-3* coding region was not detected (1), but transcripts corresponding to the non-deleted portion of the gene were detected (2, 3) in *swsn-3(tm3647)* homozygotes. (B) PCR from genomic DNA detected the *ok622* deletion (1), but it also detected the entire *swsn-5* coding region (2) and RT-PCR assays detected transcripts corresponding to the locus (2). PCR and RT-PCR assays were performed using primers RA845/846 (1), RA549/RA550 (2) and RA1051/RA550 (3).

Figure S3 BRD7/9 Phylogeny. Phylogenetic tree constructed with sequences listed in File S1 using maximum parsimony; bootstrap values are indicated (*n*=100). Similar results were obtained with maximum likelihood. Sequence names indicate the sequence was more similar to human BRD7 (7) or BRD9 (9). Gnathostomes contain distinct BRD7 and BRD9 clades, while Arthropods and Nematodes contain a single BRD7/9 clade.

Files S1-S2

Available for download as Excel files at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.009852/-/DC1

File S1 C. elegans SWI/SNF homologs and sequence alignments

File S2 Positives from RNAi Screen

Gene	Sequence relative to wild-type		
swsn-1	cactgatctcgacgaagaa[239 BP DELETION] tctgcgacggcttgtcgcc - WT		
	cactgatctcgacgaagaa TC tctgcgacggcttgtcgcc - <i>tm4567</i>		
swsn-2.1	caggttcgcgaactggtt[241 BP DELETION] gacatattgagttaacac - WT		
	caggttcgcgaactggtt TTTT gacatattgagttaacac - <i>tm3309</i>		
swsn-2.2	ttcatccaaaggttttaattt [418 BP DELETION] cgcacaccacaaaccaacg - WT		
	ttcatccaaaggttttaattt cgcacaccacaaaccaacg - <i>tm3395</i>		
swsn-2.2	tatgcggataaatgtattca [1122 BP DELETION] gaggaaggagttcaaaggt - WT		
	tatgcggataaatgtattca gaggaaggagttcaaaggt - <i>ok3161</i>		
swsn-3	tttcatttgtttttcgta[432 BP DELETION] aaaaaaatcgatttaattt - WT		
	tttcatttgtttttcgta AAA aaaaaaatcgatttaattt - $tm3647$		
swsn-4	gaaggacaaatcagaaaagg [788 BP DELETION] acctccgtttagacggttca - WT		
	gaaggacaaatcagaaaagg acctccgtttagacggttca - <i>tm305</i>		
swsn-7	aaattcatttttcaaattat [561 BP DELETION] tgcaaaatcgatttcgttcg - WT		
	aaattcatttttcaaattat tgcaaaatcgatttcgttcg - $gk1041$		
swsn-7	gcaattgttgcagagttgag [1307 BP DELETION] actctccattttcaagtgt - WT		
	gcaattgttgcagagttgag actctccattttcaagtgt - tm4263		
swsn-9	ttttcaaaaacaaattttat [1010 BP DELETION] ctcgaaaacaatgaaagaa - WT		
	ttttcaaaaacaattttat ctcgaaaacaatgaaagaa - $ok1354$		
pbrm-1	aaaaaccctgtgtcaattt [1584 BP DELETION] caaagcgaatggagtacctt - WT		
	aaaaaccctgtgtcaattt caaagcgaatggagtacctt - <i>ok843</i>		
pbrm-1	gcaatgatgcaagggctt[427 BP DELETION] tttctcactgcaaatat - WT		
	gcaatgatgcaagggctt CTCTC tttctcactgcaaatat - $tm415$		
let-526	aagcatgaggttgagctcgc [760 BP DELETION] atatctttttcagagaattc - WT		
	aagcatgaggttgagctcgc atatctttttcagagaattc - <i>tm</i> 4795		
let-526	cacgcggagaatatataga [1268 BP DELETION] tatattatttttcgcatgac - WT		
	cacgcggagaatatataga ATATA tatattatttttcgcatgac - $gk816$		

Table S1 Molecular nature of SWI/SNF deletion alleles

Table S2 Primers used in this study

Name	Sequence
RA291	GGCTCGTATGTTGTGTGGAAT
RA314	AAGGATCCTTTGTAATTTGGAAGCTGGG
RA549	caccATGTCGAGCAGCACGAAAAC
RA550	ATAGTTGAATCCACCGCCAACA
RA561	caccATGTCATCTTTCCGTCATCCGC
RA562	TTCTTCCATTTTTCTTCCGGCT
RA714	cgactcactatagggCTGCTGACACAGTTTAATGCTCCT
RA715	cgactcactatagggCTTCTTCCATTGGGTCTTCACTATC
RA845	CTACGCGAAACGGATCAAAT
RA846	CGTGGATTGGAGAGGACAAT
RA1048	ATGATTAATAAAGGACGCGCG
RA1049	ACCGGCGAGAAATTTCCAAG
RA1050	GATACAAGAACTGTAGTTCCACACC
RA1051	GCATACTAATATCATGCTGCTGAG

Genotype ^a	% Gon ^b +/- SD	п	
swsn-1(os22)	4.0 +/- 0.2	579	
swsn-1(ku355)	3.7 +/- 1.2	295	
swsn-1(tm4567)/rol-9(sc148)	1.5 +/- 0.9	409	
<i>swsn-2.1(tm3309)</i> [m-, z-]	10.7 +/- 2.1	327	
swsn-2.2(tm3395) [m-, z-]	9.0 +/- 0.5	144	
swsn-2.2(ok3161) [m+, z-]	1.2 +/- 2.3	85	
swsn-3(tm3647)	0.0 +/- 0.0	576	
swsn-4(os13)	1.7 +/- 0.7	710	
swsn-4(os13) 22.5°	3.6 +/- 3.4	140	
swsn-4(tm305)/nT1g	1.1 +/- 0.9	447	
swsn-7(gk1041) [m+, z-]	0.9 +/- 0.7	218	
<i>swsn-9(ok1354)</i> [m+, z-]	3.7 +/- 3.0	54	
<i>swsn-9(ok1354)</i> [m-, z-]	10.3 +/- 4.2	331	
pbrm-1(ok843)/hT2g	0.5 +/- 1.1	205	
<i>pbrm-1(ok843)</i> [m+, z-]	5.9 +/- 5.5	136	
<i>pbrm-1(ok843)</i> [m-, z-]	25.4 +/- 6.6	228	
<i>pbrm-1(tm415)</i> [m-, z-]	14.7 +/- 1.8	739	
let-526(h185)/hT2g ^d	0.0 +/- 0.0	332	
let-526(tm4795)/hT2g	0.0 +/- 0.0	162	
Genotype ^a	% Gon ^b +/- SD	п	p ^c
ehn-3(rd2)	22.0 +/- 2.7	441	
ehn-3(rd2);	45.8 +/- 14.0	236	*
ehn-3(rd2); swsn-1(ku355)	54.4 +/- 3.8	406	***
swsn-2.1(tm3309) [m-, z-]; ehn-3(rd2)	96.9 +/- 0.5	578	***
swsn-2.2(ok3161) [m+, z-]; ehn-3(rd2)	57.5 +/- 4.9	113	***
swsn-3(tm3647); ehn-3(rd2)	27.0 +/- 5.8	626	NS

 Table S3
 SWI/SNF acts alone and in parallel to *ehn-3* during somatic gonad development.

swsn-7(gk1041); ehn-3(rd2)	68.6 +/- 2.7	258	***
swsn-9(ok1354)/hT2g; ehn-3(rd2)	34.9 +/- 5.1	212	*
swsn-9(ok1354) [m+, z-]; ehn-3(rd2)	83.3 +/- 5.2	60	***
swsn-9(ok1354) [m-, z-]; ehn-3(rd2)	94.0 +/- 0.7	233	***
pbrm-1(ok843)/hT2g; ehn-3(rd2)	50.0 +/- 4.9	484	***
pbrm-1(ok843) [m+, z-]; ehn-3(rd2)	82.2 +/- 4.9	101	***
pbrm-1(tm415) [m-, z-]; ehn-3(rd2)	96.5 +/- 0.3	198	***
let-526(h185)/hT2g; ehn-3(rd2) ^d	22.4 +/- 7.4	361	NS
let-526(tm4795)/hT2g; ehn-3(rd2)	24.9 +/- 2.5	365	NS

^a Maternal [m+ or m-] and zygotic [z+ or z-] contribution is indicated.

^b Gonadogenesis defects were assessed using a dissecting microscope and the average penetrance and standard deviation (SD) are reported.

^c Unpaired t-tests were used for statistical comparisons; *ehn-3(rd2)* was compared and the significance is indicated (NS=not significant, $p \le 0.05^*$, $p \le 0.01^{**}$, $p \le 0.001^{***}$).

^d *let-526(h185)* is linked to *dpy-5(e61) unc-13(e450)*

	Percentage of Animals ^a			
Genotype	Two arms	One arm	No arms	n
swsn-1(os22)	96.0	4.0	0	579
swsn-1(ku355)	96.3	3.7	0	295
<i>swsn-2.1(tm3309)</i> [m-, z-]	89.3	7.9	2.8	327
swsn-2.2(ok3161) [m+, z-]	98.8	1.2	0	85
swsn-7(gk1041)	99.1	0.9	0	218
<i>swsn-9(ok1354)</i> [m-, z-]	89.7	9.4	0.9	331
<i>pbrm-1(ok843)</i> [m+, z-]	94.1	5.9	0	136
<i>pbrm-1(tm415)</i> [m-, z-]	85.3	14.1	0.7	739
ehn-3(rd2)	78.0	20.9	1.1	441
ehn-3(rd2); swsn-1(os22)	54.2	39.0	6.8	236
ehn-3(rd2);	45.6	34.0	20.4	406
swsn-2.1(tm3309) [m-, z-]; ehn-3(rd2)	3.1	10.9	86.0	578
swsn-2.2(ok3161) [m+, z-]; ehn-3(rd2)	42.5	43.4	13.3	113
swsn-7(gk1041); ehn-3(rd2)	31.4	47.7	20.9	258
swsn-9(ok1354) [m-, z-]; ehn-3(rd2)	6.0	30.1	63.9	233
<i>pbrm-1(ok843)</i> [m+, z-]; <i>ehn-3(rd2)</i>	17.8	55.4	26.7	101
pbrm-1(tm415) [m-, z-]; ehn-3(rd2)	3.5	20.2	76.3	198

Table S4 Qualitative differences between *ehn-3* and *ehn-3; swsn* double mutants

^a Gonadogenesis defects were assessed using a dissecting microscope. The percentage of animals with two gonadal arms, one gonadal arm, or no gonadal arms (including unextended and severely reduced gonads) is reported.

RNAi	Genotype	% Gon ^a +/- SD	n
none	wild-type	0	>200
	hnd-1::rde-1 ^b	0 +/- 0	184
swsn-4	wild-type	Emb	169
	hnd-1::rde-1 ^b	99.0 +/- 1.1	99
pbrm-1	wild-type	Lvl	105
	hnd-1::rde-1 ^{b,c}	10.2 +/- 3.3	137
let-526	wild-type	Emb	78
	hnd-1::rde-1 ^b	100 +/- 0	379

Table S5 Tissue-specific RNAi of BAF and PBAF subunits

^a Gonadogenesis defects were assessed using a dissecting microscope. The average

penetrance and standard deviation (SD) are reported. Embryonic (Emb) or Larval (Lvl) lethality is indicated.

^b genotype is unc-119(ed3); rde-1(ne219); rdIs7 [hnd-1::rde-1]

^c also includes ccls4444 [arg-1::GFP]