

The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization

David Atencio*, Cassandra Barnes*, Thomas M. Duncan*, Ian M. Willis§ and Steven D. Hanes*

*Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, [§]Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461

Corresponding Author: Steven D. Hanes, Ph.D. Department of Biochemistry and Molecular Biology SUNY Upstate Medical University 750 E. Adams St., Syracuse, NY 13210 haness@upstate.edu (315) 464-9887

DOI: 10.1534/g3.113.008763

Figure S1 Representative BLI experiments. (**A**) Raw data for binding of purified Ess1 protein (30 μM) to control peptides from RNA polymerase II CTD. Time of addition of biotinylated peptides (or no-peptide controls) to streptavidin-coated sensors is indicated by the arrow (+ peptide). After peptide binding, sensors were washed in buffer alone prior to transfer into buffer with Ess1 protein (+Ess1). Sensors with peptide and bound Ess1 were placed into fresh buffer (**dissociation**). (**B**) Example of raw data using peptides representing the nuclear export sequence (NES) of Whi5 at three concentrations of Ess1 as indicated. Samples A5, D5, and G5 are the Whi5-NES-P peptide with 30, 10, 3 μM Ess1 protein, respectively. Samples B5 and E5 are Whi5-NES-UN peptide with 30 and 10 μM Ess1 protein, respectively. Samples C5, F5, and H5 are "no-peptide-added" controls with 30, 10, 3 μM Ess1 protein, respectively. Note that the no-peptide controls show increased (background) signal with higher Ess1 protein concentrations, as expected. For both panels **A** and **B**, the (**P**) indicates phospho-Ser peptides, (**Un**) indicates unphosphorylated peptides. Full peptide sequences are given in the main text (**Table 5**).

Figure S2 Estimation of apparent K_d **values for binding of Ess1 to peptides.** From the BLI kinetic assays of Ess1 binding with each peptide (Figure 6), regression analyses were used to determine the apparent dissociation constants (K_{app}) for binding of Ess1 to each of the query peptides. (A) For each phosphorylated peptide, observed rates (k_{obs}) for Ess1 association were plotted *vs.* the concentration of Ess1, and the slope provides an estimate of the 2nd-order association rate (k_a, M⁻¹s⁻¹), which is listed in Table S4. The kinetic estimate for K_D (K_{appK}, Table 5) was calculated as the ratio of k_d/k_a values from Table S4. (B) The plateau value for binding at each Ess1 concentration (Figure 6) was assumed to represent the amount of Ess1/peptide complex at equilibrium. For each phosphorylated peptide, these equilibrium binding responses were plotted *vs.* Ess1 concentration and fit to a hyperbolic binding isotherm to obtain the equilibrium estimate for K_D (K_{appEq}, Table 5).

Figure S3 BLI experiment testing Ess1 binding to non-substrate a phospho-peptide. Raw data for binding of purified Ess1 protein (30 μM) to control peptides from the RNA polymerase II CTD (as in Figure S1), and to non-substrate control peptides from Histone H3 residues 1-21. **H3-Un** is unphosphorylated, **H3-P** is phosphorylated at serine 10. Experiment is carried out as described in Legend to Figure S1. Histone peptides were from Millipore (cat # 12-403; 12-427) The sequences are ARTKQTARK<u>S</u>TGGKAPRKQLA-GGK-Biotin, with the Ser residue that is phosphorylated in peptide H3-P highlighted. Levels of Ess1 binding to both H3 peptides is essentially identical to binding to no-peptide added control samples (data not shown).

Table S1 Oligonucleotides used in this study

Oligo Name	Sequence	Use	Gene	reference
OW38	CATAACCGACTACGGCAC	strain construction	ESS1 5'-F	Ma et al., 2012
OW989	TGTTTACAAAAAAATACAAGAATCCGTTACTAAAGATTCAGTATAGCGACC AGCATTCAC	strain construction	NAT-R	Ma et al., 2012
OW1534	TTCGCGAAGTAACCCTTCGTGGA	RT-qPCR control	SNR6-F	Ma et al., 2012
OW1535	GTAAAACGGTTCATCCTTATGCAG	RT-qPCR control	SNR6-R	Ma <i>et al.,</i> 2012
UP007	CAAGGTCACACTCCACTCCA	RT-qPCR	SWI4-F	This study
UP008	GTAGTCCTGCTGACCCAAGC	RT-qPCR	SWI4-R	This study
UP009	ACGACCGAGGTGAGTTATGG	RT-qPCR	SWI6-F	This study
UP010	GCTTGCCTCTGGCAGTATTC	RT-qPCR	SWI6-R	This study
UP011	GGATGGACGGACAAGACACT	RT-qPCR	WHI5-F	This study
UP012	TCCACTTCGGTATCCGACTC	RT-qPCR	WHI5-R	This study
UP013	CCACGTCCGTATCTTCCTCT	RT-qPCR	MBP1-F	This study
UP014	ATATAGGGAGCGCTGTGTGG	RT-qPCR	MBP1-R	This study
UP015	TTTACCCTCCGACGCTACTG	RT-qPCR	WHI3-F	This study
UP016	CCTCCTCTTCTGCTGTTTGG	RT-qPCR	WHI3-R	This study
UP027	TGACGATCCACTAGCGACTTC	RT-qPCR	CLN1-2-F	This study
UP028	CTCGACCTGGCACCATTC	RT-qPCR	CLN1-2-R	This study
UP096	ATTCGACTGCCTTGAGCTGT	RT-qPCR	CLB1-F	This study
UP097	CCCATTCGTACTCCTCCAGA	RT-qPCR	CLB1-R	This study
UP094	ACACCCAAGATGAGGCATTC	RT-qPCR	HCM1-F	This study
UP095	GGGTGCAGAGGACTTTCTTG	RT-qPCR	HCM1-R	This study
UP098	TTGCCTGTTCATTGCCTGTA	RT-qPCR	CLB6-F	This study
UP099	GAATTTGGCCATGTTCCTTG	RT-qPCR	CLB6-R	This study
UP100	CCCATCATTGCGATAAAAGGT	RT-qPCR	POL1-F	This study
UP101	ACGCTTACCAAAAACGGAGA	RT-qPCR	POL1-R	This study
UP102	TCAAGGAGGTCATGGAGGTC	RT-qPCR	SCJ1-F	This study
UP103	CATCTGCAGAGCCACTACCA	RT-qPCR	SCJ1-R	This study
UP104	GTCTATGAAGCAGCCCAAGC	RT-qPCR	HPR1-F	This study
UP105	CATCCAACGCTTCCACTTTT	RT-qPCR	HPR1-R	This study
UP082	TACATGGTCCATCGGCTGTA	RT-qPCR	CDC28-F	This study
P083	TAGGTCTTTTCTGCGCCATT	RT-qPCR	CDC28-R	This study
P084	TTTCTCCACCATTTGCCTTC	RT-qPCR	CLN3-F	This study
UP085	TGAATTTTGTGGGATGCTCA	RT-qPCR	CLN3-R	This study

UP086	CCAACCTTCTACGGCGAATA	RT-qPCR	CDC14-F	This study
UP087	TATCCTGCATGGATTCGTCA	RT-qPCR	CDC14-R	This study
UP088	AGAAAAGAACGTCGGGACTG	RT-qPCR	NRM1-F	This study
UP089	ATACCATCCTGGCATGAGGA	RT-qPCR	NRM1-R	This study
UP090	GTTTTCAGCCGGAATATGGA	RT-qPCR	CLN2-F	This study
UP091	CATTGGTTGCGTTATTGCTG	RT-qPCR	CLN2-R	This study
UP092	CGAAGGATACCGCTATGGAA	RT-qPCR	HSL1-F	This study
UP093	AGCATATGCGCATCATCAAA	RT-qPCR	HSL1-R	This study
UP108	TATCGTTGAATCAGGAAGCGGTGTTCGTGTGATCAAGCGGGTAGGTGGTCG ACGGATCCCCGGG	strain construction	ess1 ^{H164R} + YFP- HIS3 F	This study
OW318	GGGAATAAGAACATAAAAAGGTGAGGTGGAGAAGCAAATGCCAACCATC GATGAATTCGAGCTCG	strain construction	ess1 ^{H164R} + YFP- HIS3 R	This study

F = forward; R = reverse

Tables S2-S3

Available for download at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008763/-/DC1

 Table S2
 Complete list of SGA interactions with ess1^{H164R}.
 429 genetic interactions were identified after setting a calibrated P-value of between +0.2 to +1.0 (aggravating interactions), or -0.2 to -1.0 (alleviating interactions).

Table S3 Results of SlimMapper Gene Ontology (GO) analysis. List shows functional categories of genes that interact with *ESS1* derived from the SGA using a calibrated P-value cutoff value of 0.25. Analysis was done using SlimMapper http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl and yeast GO-Slim:Process was used to sort genes into indicated functional categories.

Table S4 Fitting Results for BLI Kinetic Assays

Peptide	k _a (M ⁻¹ s ⁻¹) ±SD	k _d (s⁻¹) ±SD	%Rmax ±SD
CTD-P	27100 ±1220	0.0923 ±0.0274	71 ±1
Swi6-NLS-P	25100 ± 4570	0.2537 ± 0.0881	100
Whi5-NLS-P	22800 ± 1420	0.0722 ±0.0384	72 ±1
Whi5-NES-P	17500 ±830	0.0503 ± 0.0144	64 ±2

Summary of results for fitting curves of BLI kinetic data (**Fig. 6**). The dissociation rate (k_d) is an average (±standard deviation (SD)) for fits at 3 concentrations of each peptide (3, 10, 30 μ M). With the exception of the Swi6-NLS-P peptide, dissociation appeared biphasic, and the largest portion of signal for bound Ess1 (%Rmax) dissociated with the k_d value is shown; a smaller portion appeared to dissociate at a slower rate, which might have been due to re-binding as the concentration of free peptide increased. For Swi6-NLS-P, dissociation was faster and monophasic; all signal for bound Ess1 dissociated with the k_d value shown. The k_a value for each peptide (±SD) was obtained from the slope in supplemental **Fig. S2** (the dependence of association kinetics (k_{obs}) on the peptide concentration).