## Induction of nuclear translocation of mutant cytoplasmic p53 by geranylgeranoic acid in a

## human hepatoma cell line

Chieko Iwao and Yoshihiro Shidoji\*

Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki,

Academy Hills 1-1-1, Nagayo, Nagasaki 851-2195, Japan

## \*Corresponding author:

Y. Shidoji, telephone/fax: +81-95-813-5207, e-mail: shidoji@sun.ac.jp

Running title: GGA-induced nuclear translocation of mutant p53

**Support**: This work was supported in part by a grant-in-aid from the Japan Society for the Promotion of Science (grant number 19590230) and a research-grant B from the University of Nagasaki.



Supplementary Figure S1. GGA effects on nuclear/cytoplasmic distribution of p53 in HuH-7 cells.

Whole-cell lysates of HuH-7 cells were separated into nuclear and cytoplasmic fractions. Protein concentration was determined using Bio-Rad Protein Assay reagent. (a) Fraction samples (5  $\mu$ g) were subjected to immunoblotting with anti-p53 antibody. Histone H3 and GAPDH were used as nuclear and cytoplasmic markers, respectively. (b) Coomassie Brilliant Blue stain.



Supplementary Figure S2. Subcellular distribution of p53 in HUH-7 cells.

Whole-cell lysates of HuH-7 cells were separated into nuclear, mitochondrial, post-mitochondrial, cytosolic, and 348900 g supernatant fractions. Protein concentration was determined using the Bio-Rad Protein Assay reagent. Fraction samples (5 µg) were subjected to immunoblotting with an anti-p53 antibody.



Supplementary Figure S3. Uncropped blots probed with anti-p53 (a) and reprobed with anti- $\beta$ -III-tubulin (b).

Panels **c** and **d** of Figure 4 in the main text were cropped by each 4merging blue-lined squares in panels **a** and **b**, respectively. Unmarked lanes show the samples treated with other ditrepenoids than GGA, which are irrelevant to the present study, so that they were removed.



**Supplementary Figure S4.** GGA upregulates the *PUMA* gene expression selectively in HuH-7 cells.

(a) HuH-7cells were treated with 0 — 30  $\mu$ M of GGA for 8 h, and total mRNA was extracted to analyze PUMA mRNA expression by quantitative RT-PCR. Each point represents the mean ± SE of four independent experiments. (b) HuH-7 cells were treated with or without 20  $\mu$ M of GGA for 2, 4, 6, 8, and 24 h. Whole cell lysates and mitochondrial fractions were prepared and the PUMA level was analysed by western blotting. Total β-actin and porin were used as loading controls. (c) HuH-7 cells (p53 Y220C), PLC/PRF/5 cells (p53 R249S), HepG2 cells (p53 wild type), and Hep3B cells (p53 null) were treated with or without 20  $\mu$ M of GGA for 0.5, 1, 2, 4, 8, and 24 h, and total mRNA was extracted to analyse *PUMA* mRNA expression by quantitative RT-PCR. Each point represents the mean ± SE for HuH-7 (*n* = 6), Hep3B (*n* = 3), HepG2 (*n* = 3) and PLC/PRF/5 (*n* = 3).



**Supplementary Figure S5.** Enhancement of transcriptional activation of the *PUMA* promoter by GGA in HuH-7 cells.

(a) Dual luciferase reporter assay with the p53-responsive consensus sequence in HuH-7 cells after 24-h GGA (0 — 20  $\mu$ M) treatment. The luciferase activity was normalized by renilla luciferase. The asterisks (\*) indicate statistically significant changes (p < 0.05) as determined by the Student's t-test. (b) Dual luciferase reporter assay with p53-responsive 5'-upstream regulatory region of the *PUMA* gene in HuH-7 cells after GGA (20  $\mu$ M) treatment. The luciferase activity was normalized by renilla luciferase. The asterisks (\*) indicate statistically significant changes (p < 0.05) as determined by the Student's t-test. Student's t-test.

Supplementary Table S1. The nucleotide sequences of each primers used for real-time RT-PCR

| Genes             |   | Sequence (5' -3')       |
|-------------------|---|-------------------------|
| p21               | F | CTGGAGACTCTCAGGGTCGAAA  |
|                   | R | GATTAGGGCTTCCTCTTGGAGA  |
| PUMA              | F | CCCAAGACTGTTGGGTCTG     |
|                   | R | GCCGTAGTAATCCGTGAAGAG   |
| TIGAR             | F | AGACAGCGGTATTCCAGG      |
|                   | R | AGAGTGGCTGGTAAGGAAC     |
| SCO2              | F | AGAAGCCAGGAGAGGGACGG    |
|                   | R | CCAGGCCCAGAGTGAAGGAG    |
| DRAM              | F | CGCCTTCATTATCTCCTACG    |
|                   | R | CGAAACATCCCACCAATCCA    |
| 28S ribosomal RNA | F | TTAGTGACGCGCATGAATGG    |
|                   | R | TGTGGTTTCGCTGGATAGTAGGT |

F: forward primer, R: reverse primer

Supplementary Table S2. The conditions of thermal cycler for real-time RT-PCR of each genes

| p21         | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 10 s  | 20°C / s  |
| (45 cycles) | 65°C, 20 s  | 20°C / s  |
|             | 72°C, 10 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 57°C, 15 s  | 20°C / s  |
|             | 98°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 30 s  | 20°C / s  |

| PUMA        | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 10 s  | 20°C / s  |
| (40 cycles) | 61°C, 20 s  | 20°C / s  |
|             | 72°C, 20 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 61°C, 15 s  | 20°C / s  |
|             | 98°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 10 s  | 20°C / s  |
|             |             |           |

| TIGAR       | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 10 s  | 20°C / s  |
| (45 cycles) | 56°C, 20 s  | 20°C / s  |
|             | 72°C, 15 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 57°C, 15 s  | 20°C / s  |
|             | 98°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 10 s  | 20°C / s  |
|             |             |           |

| SCO2        | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 10 s  | 20°C / s  |
| (40 cycles) | 56°C, 20 s  | 20°C / s  |
|             | 72°C, 20 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 57°C, 15 s  | 20°C / s  |
|             | 98°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 30 s  | 20°C / s  |

| DRAM        | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 10 s  | 20°C / s  |
| (60 cycles) | 55°C, 10 s  | 20°C / s  |
|             | 72°C, 20 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 65°C, 15 s  | 20°C / s  |
|             | 95°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 30 s  | 20°C / s  |

| 28S rRNA    | Temperature | Slope     |
|-------------|-------------|-----------|
| Denature    | 95°C, 600 s | 20°C / s  |
| PCR         | 95°C, 15 s  | 20°C / s  |
| (40 cycles) | 60°C, 30 s  | 20°C / s  |
| Melting     | 95°C, 0 s   | 20°C / s  |
|             | 65°C, 15 s  | 20°C / s  |
|             | 95°C, 0 s   | 0.1°C / s |
| Cooling     | 40°C, 30 s  | 20°C / s  |